Citation: LIU Zhao-Miao,  ZHAO Si-Yu,  ZHAO Sheng,  YIN Shen,  XU Ying-Li,  PANG Yan. Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1666-1677. doi: 10.19756/j.issn.0253-3820.210515 shu

Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer

  • Corresponding author: PANG Yan, pangyan@bjut.edu.cn
  • Received Date: 10 May 2021
    Revised Date: 6 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.11872083, 11702007).

  • The micro-mixer is usually a pre-treatment device for laboratory chip (LOC). The study on the influence of mixing mechanism and structure on mixing can provide guides for design and processing of micromixers. In this work, the flow characteristics and mixing mechanism in the square wave micromixer were studied when the channel Re ynolds number was between 0.1 and 80, and the influence of channel structure on the flow and mixing performance of the fluid in the molecular diffusion dominant phase and the convection diffusion dominant phase was analyzed. The results showed that with the increase of Re in the channel, the fluid mixing transitions from molecular diffusion dominated to convection diffusion dominated stage. The factor that influenced the fluid mixing index during the dominant phase of molecular diffusion was the characteristic diffusion length. The channel width had a greater impact on the mixing index than the channel height. The reduction of the channel width could significantly increase the mixing index in the molecular diffusion phase. At Re=0.5, the mixing index was increased by 34.59% when the channel width was reduced from 400 μm to 200 μm. The factor affecting the mixing index in the dominant phase of convection diffusion was the magnitude and intensity of the vortex generated by the centrifugal force at the turn of the microchannel. The vortex of the square wave micromixer with square section had the most fully developed vortex and the best mixing performance. Reducing the size of the square section could increase the vortex strength. At Re=80, the mixing index of the micromixer with a channel section side length of 200 μm was 22.71% higher than the side length of 300 μm.
  • 加载中
    1. [1]

      JEONG G S, CHUNG S, KIM C B, LEE S H. Analyst, 2010, 135(3):460-473.

    2. [2]

      LEE T Y, HYUN K A, KIM S I, JUNG H I. Sens. Actuators, B, 2017, 238:1144-1150.

    3. [3]

      KEFALA I N, PAPADOPOULOS V E, KARPOU G, KOKKORIS G, PAPADAKIS G, TSEREPI A. Microfluid. Nanofluid., 2015, 19(5):1047-1059.

    4. [4]

      JIANG L G, ZENG Y, SUN Q Q, SUN Y R, GUO Z H, QU J N Y, YAO S H. Anal. Chem., 2015, 87(11):5589-5595.

    5. [5]

      ZHAO S G, HUANG P H, ZHANG H Y, RICH J, BACHMAN H, YE J, ZHANG W F, CHEN C Y, XIE Z M, TIAN Z H, KANG P T, FU H, HUANG T J. Lab Chip, 2021, 21(12):2453-2463.

    6. [6]

      OKUDUCU M B, ARAL M M. Micromachines, 2021, 12(4):372.

    7. [7]

      LI Y, XU F, LIU C, XU Y Z, FENG X J, LIU B F. Analyst, 2013, 138(16):4475-4482.

    8. [8]

    9. [9]

      CHEN X Y, LI T C, ZENG H, HU Z L, FU B D. Int. J. Heat Mass Transfer, 2016, 98:131-140.

    10. [10]

      HOSSAIN S, LEE I, KIM S M, KIM K Y. Chem. Eng. J., 2017, 327:268-277.

    11. [11]

      CHEN X Y, LI T C. Chem. Eng. J., 2017, 313:1406-1414.

    12. [12]

      SHIH T R, CHUNG C K. Microfluid. Nanofluid., 2008, 5(2):175-183.

    13. [13]

      LEE C Y, WANG W T, LIU C C, FU L M. Chem. Eng. J., 2016, 288:146-160.

    14. [14]

      CHEN X Y, LI T C, HU Z L. Microsyst. Technol., 2017, 23(7):2649-2656.

    15. [15]

      ANSARI M A, KIM K Y, ANWAR K, KIM S M. J. Micromech. Microeng., 2010, 20(5):055007.

    16. [16]

      BAYAREH M, ASHANI M N, USEFIAN A. Chem. Eng. Process.:Process Intensif., 2020, 147:107771.

    17. [17]

      RAZA W, HOSSAIN S, KIM K Y. Micromachines, 2020, 11(5):455.

    18. [18]

      SANTANA H S, TORTOLA D S, SILVA J L, TARANTO O P. Energy Conv. Manag., 2017, 141(SI):28-39.

    19. [19]

      XU J J, CHEN X Y. Int. J. Heat Mass Transf., 2019, 141:346-352.

    20. [20]

      PRADEEP A, RAVEENDRAN J, RAMACHANDRAN T, NAIR B G, BABU T G S. Microelectron. Eng., 2016, 165:32-40.

    21. [21]

      ZOU L L, GONG Y, CHEN L S, YI X, LIU W K. Chem. Eng. Sci., 2021, 244:116816.

    22. [22]

      VATANKHAH P, SHAMLOO A. Anal. Chim. Acta, 2018, 1022:96-105.

    23. [23]

      AKAR S, TAHERI A, BAZAZ R, WARKIANI E, SHAEGH M. Chem. Eng. Process.:Process Intensif., 2021, 160:108251.

    24. [24]

      KUO J N, LIAO H S, LI X M. Microsyst. Technol., 2017, 23(3):721-730.

    25. [25]

      LA M, PARK S J, KIM H W, PARK J J, AHN K T, RYEW S M, KIM D S. Microfluid. Nanofluid., 2013, 15(1):87-98.

    26. [26]

      SU T Y, CHENG K, WANG J Y, XU Z, DAI W. Microsyst. Technol., 2019, 25(11):4391-4397.

    27. [27]

      TRIPATHI E, PATOWARI P K, PATI S. Chem. Eng. Process.:Process Intensif., 2021, 162:108335.

    28. [28]

      RAMPALLI S, DUNDI T M, CHANDRASEKHAR S, RAJU V R K, CHANDRAMOHAN V P. Chem. Prod. Process Model., 2020, 15(2):20190071.

    29. [29]

      RUDYAK V, MINAKOV A. Micromachines, 2014, 5(4):886-912.

    30. [30]

      WANG R J, LIJIN B Q, SHI D D, ZHU Z F. Sens. Actuators, B, 2017, 249:395-404.

    31. [31]

    32. [32]

      HUNT J C R, WRAY A A, MOIN P. Studying Turbulence Using Numerical Simulation Databases, 1988:193-208.

    33. [33]

      KAMHOLZ A E, YAGER P. Biophys. J., 2001, 80(1):155-160.

    34. [34]

      SULLIVAN S P, AKPA B S, MATTHEWS S M, FISHER A C, GLADDEN L F, JOHNS M L. Sens. Actuators, B, 2007, 123(2):1142-1152.

  • 加载中
    1. [1]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    5. [5]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Fangdong Hu Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013

    8. [8]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(12)
  • Abstract views(647)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return