Citation: LIU Zhao-Miao,  ZHAO Si-Yu,  ZHAO Sheng,  YIN Shen,  XU Ying-Li,  PANG Yan. Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1666-1677. doi: 10.19756/j.issn.0253-3820.210515 shu

Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer

  • Corresponding author: PANG Yan, pangyan@bjut.edu.cn
  • Received Date: 10 May 2021
    Revised Date: 6 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.11872083, 11702007).

  • The micro-mixer is usually a pre-treatment device for laboratory chip (LOC). The study on the influence of mixing mechanism and structure on mixing can provide guides for design and processing of micromixers. In this work, the flow characteristics and mixing mechanism in the square wave micromixer were studied when the channel Re ynolds number was between 0.1 and 80, and the influence of channel structure on the flow and mixing performance of the fluid in the molecular diffusion dominant phase and the convection diffusion dominant phase was analyzed. The results showed that with the increase of Re in the channel, the fluid mixing transitions from molecular diffusion dominated to convection diffusion dominated stage. The factor that influenced the fluid mixing index during the dominant phase of molecular diffusion was the characteristic diffusion length. The channel width had a greater impact on the mixing index than the channel height. The reduction of the channel width could significantly increase the mixing index in the molecular diffusion phase. At Re=0.5, the mixing index was increased by 34.59% when the channel width was reduced from 400 μm to 200 μm. The factor affecting the mixing index in the dominant phase of convection diffusion was the magnitude and intensity of the vortex generated by the centrifugal force at the turn of the microchannel. The vortex of the square wave micromixer with square section had the most fully developed vortex and the best mixing performance. Reducing the size of the square section could increase the vortex strength. At Re=80, the mixing index of the micromixer with a channel section side length of 200 μm was 22.71% higher than the side length of 300 μm.
  • 加载中
    1. [1]

      JEONG G S, CHUNG S, KIM C B, LEE S H. Analyst, 2010, 135(3):460-473.

    2. [2]

      LEE T Y, HYUN K A, KIM S I, JUNG H I. Sens. Actuators, B, 2017, 238:1144-1150.

    3. [3]

      KEFALA I N, PAPADOPOULOS V E, KARPOU G, KOKKORIS G, PAPADAKIS G, TSEREPI A. Microfluid. Nanofluid., 2015, 19(5):1047-1059.

    4. [4]

      JIANG L G, ZENG Y, SUN Q Q, SUN Y R, GUO Z H, QU J N Y, YAO S H. Anal. Chem., 2015, 87(11):5589-5595.

    5. [5]

      ZHAO S G, HUANG P H, ZHANG H Y, RICH J, BACHMAN H, YE J, ZHANG W F, CHEN C Y, XIE Z M, TIAN Z H, KANG P T, FU H, HUANG T J. Lab Chip, 2021, 21(12):2453-2463.

    6. [6]

      OKUDUCU M B, ARAL M M. Micromachines, 2021, 12(4):372.

    7. [7]

      LI Y, XU F, LIU C, XU Y Z, FENG X J, LIU B F. Analyst, 2013, 138(16):4475-4482.

    8. [8]

    9. [9]

      CHEN X Y, LI T C, ZENG H, HU Z L, FU B D. Int. J. Heat Mass Transfer, 2016, 98:131-140.

    10. [10]

      HOSSAIN S, LEE I, KIM S M, KIM K Y. Chem. Eng. J., 2017, 327:268-277.

    11. [11]

      CHEN X Y, LI T C. Chem. Eng. J., 2017, 313:1406-1414.

    12. [12]

      SHIH T R, CHUNG C K. Microfluid. Nanofluid., 2008, 5(2):175-183.

    13. [13]

      LEE C Y, WANG W T, LIU C C, FU L M. Chem. Eng. J., 2016, 288:146-160.

    14. [14]

      CHEN X Y, LI T C, HU Z L. Microsyst. Technol., 2017, 23(7):2649-2656.

    15. [15]

      ANSARI M A, KIM K Y, ANWAR K, KIM S M. J. Micromech. Microeng., 2010, 20(5):055007.

    16. [16]

      BAYAREH M, ASHANI M N, USEFIAN A. Chem. Eng. Process.:Process Intensif., 2020, 147:107771.

    17. [17]

      RAZA W, HOSSAIN S, KIM K Y. Micromachines, 2020, 11(5):455.

    18. [18]

      SANTANA H S, TORTOLA D S, SILVA J L, TARANTO O P. Energy Conv. Manag., 2017, 141(SI):28-39.

    19. [19]

      XU J J, CHEN X Y. Int. J. Heat Mass Transf., 2019, 141:346-352.

    20. [20]

      PRADEEP A, RAVEENDRAN J, RAMACHANDRAN T, NAIR B G, BABU T G S. Microelectron. Eng., 2016, 165:32-40.

    21. [21]

      ZOU L L, GONG Y, CHEN L S, YI X, LIU W K. Chem. Eng. Sci., 2021, 244:116816.

    22. [22]

      VATANKHAH P, SHAMLOO A. Anal. Chim. Acta, 2018, 1022:96-105.

    23. [23]

      AKAR S, TAHERI A, BAZAZ R, WARKIANI E, SHAEGH M. Chem. Eng. Process.:Process Intensif., 2021, 160:108251.

    24. [24]

      KUO J N, LIAO H S, LI X M. Microsyst. Technol., 2017, 23(3):721-730.

    25. [25]

      LA M, PARK S J, KIM H W, PARK J J, AHN K T, RYEW S M, KIM D S. Microfluid. Nanofluid., 2013, 15(1):87-98.

    26. [26]

      SU T Y, CHENG K, WANG J Y, XU Z, DAI W. Microsyst. Technol., 2019, 25(11):4391-4397.

    27. [27]

      TRIPATHI E, PATOWARI P K, PATI S. Chem. Eng. Process.:Process Intensif., 2021, 162:108335.

    28. [28]

      RAMPALLI S, DUNDI T M, CHANDRASEKHAR S, RAJU V R K, CHANDRAMOHAN V P. Chem. Prod. Process Model., 2020, 15(2):20190071.

    29. [29]

      RUDYAK V, MINAKOV A. Micromachines, 2014, 5(4):886-912.

    30. [30]

      WANG R J, LIJIN B Q, SHI D D, ZHU Z F. Sens. Actuators, B, 2017, 249:395-404.

    31. [31]

    32. [32]

      HUNT J C R, WRAY A A, MOIN P. Studying Turbulence Using Numerical Simulation Databases, 1988:193-208.

    33. [33]

      KAMHOLZ A E, YAGER P. Biophys. J., 2001, 80(1):155-160.

    34. [34]

      SULLIVAN S P, AKPA B S, MATTHEWS S M, FISHER A C, GLADDEN L F, JOHNS M L. Sens. Actuators, B, 2007, 123(2):1142-1152.

  • 加载中
    1. [1]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    5. [5]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    8. [8]

      Yaoyue Yang Weishang Jia Zhaoxia Ma Xiaole Jiang Yajuan Wu . Innovative Teaching Design and Practice of a Blended First-Class Course on “Physical Chemistry Experiment” in Ethnic Universities. University Chemistry, 2025, 40(7): 71-78. doi: 10.12461/PKU.DXHX202409118

    9. [9]

      Yuanyuan Cheng Di Zhao Zhicheng Zhang . Practical Exploration of AI-Enabled Rain Classroom in Blended Teaching of Physical Chemistry. University Chemistry, 2025, 40(9): 196-205. doi: 10.12461/PKU.DXHX202503029

    10. [10]

      Wenwen Ma Liyan Liu Chengyang Yin Hongdan Zhang Lian Kong Na Wei Zhan Yu Zhen Zhao . Exploration of the Online and Offline Mixed Teaching Mode of Specialized English for Chemistry Majors Based on the BOPPPS Model. University Chemistry, 2025, 40(9): 287-294. doi: 10.12461/PKU.DXHX202410026

    11. [11]

      Fangdong Hu Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013

    12. [12]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    13. [13]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    14. [14]

      Ling Li Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063

    15. [15]

      Wenna Wu Tao Zhang Tao He Kai Feng Yanyang Han Shanshan Liu Huajie Liu Qingzhong Li Xin Yang . Research and Application of AI Teaching Assistants in the Blended Teaching of Principles of General Chemistry: A Case Study of “Atomic Structure”. University Chemistry, 2025, 40(9): 245-252. doi: 10.12461/PKU.DXHX202504085

    16. [16]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(13)
  • Abstract views(1012)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return