Citation: DAI Jian-Xiong,  YANG Yan-Ting,  YU Hao,  DUAN Yi-Xiang. A Novel Plasma Jet Atomic Emission Spectrometer and Its Application in Rapid Detection of Elements in Rice[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1686-1693. doi: 10.19756/j.issn.0253-3820.210490 shu

A Novel Plasma Jet Atomic Emission Spectrometer and Its Application in Rapid Detection of Elements in Rice

  • Corresponding author: DUAN Yi-Xiang, yduan@scu.edu.cn
  • Received Date: 8 May 2021
    Revised Date: 28 June 2021

    Fund Project: Supported by the Special Project of Major Scientific Instruments and Equipment in Sichuan Province, China (No.2019ZDZX0036) and the Key Research and Development Program of Shaanxi Province, China (No.2019ZDLSF01-03).

  • A novel direct analysis technology for solid samples using an atomic emission spectrometer based on microwave plasma called plasma jet atomic emission spectrometer (PJ-AES) was developed for the first time. In the work, PJ-AES was used for the rapid detection of cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), phosphorus (P), silicon (Si) and other inorganic elements in rice. The linear range, sensitivity, stability and other properties of the PJ-AES were systematically investigated. As a result, the linear range of heavy metal element Cd (228.80 nm) was 0.03-1.72 mg/kg, and the linear correlation coefficient (R2) was 0.998, the detection limit was 0.009 mg/kg. A total of 8 groups of rice standard samples with a Cd concentration of 0.22 mg/kg were detected, and the relative standard deviation (RSD) of the signal intensity at 228.80 nm (Cd) was 2.8%. Finally, the method was used for quantitative detection of Cd in real samples and the obtained results were compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the PJ-AES was suitable for rapid, accurate, qualitative and quantitative detection of Cd in rice. The development of this technology provided a new direct analysis and detection method for solid samples for atomic spectroscopy. This method showed many advantages such as fast analysis speed, simple sample processing, small size, low cost, and accurate detection.
  • 加载中
    1. [1]

      KELSON J R, SHAMBERGER R. J. Clin. Chem., 2019, 24(2):240-244.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      OZBEK N, TINAS H, ATESPARE A E. Microchem. J., 2019, 144(1):474-478.

    7. [7]

      SCHILD M, GUNDLACH-GRAHAM A, MENON A, JEVTIC J, PIKELJA V, TANNER M, HATTENDORF B, GVNTHER D. Anal. Chem., 2018, 90(22):13443-13450.

    8. [8]

      HUANG M, HIRABAYASHI A, SHIRASAKI T, KOIZUMI H. Anal. Chem., 2000, 72(11):2463-2467.

    9. [9]

      HANNA S N, JONES B T. Appl. Spectrosc. Rev., 2011, 46(8):624-635.

    10. [10]

      RAJAPAKSA A, QI A, YEO L Y, COPPEL R, FRIEND J R. Lab. Chip, 2014, 14(11):1858-1865.

    11. [11]

      DIAS L F, MIRANDA G R, SAINT'PIERRE T D, MAIA S M, FRESCURA V L A, CURTIUS A J. Spectrochim. Acta, Part B, 2005, 60(1):117-124.

    12. [12]

    13. [13]

      STANKOVA A, GILON N, DUTRUCH L, KANICKY V J. Anal. Atom. Spectrom., 2011, 26(2):443-449.

    14. [14]

    15. [15]

      ESKINA V, FILATOVA, D G, BARANOVSKAYA V B, KARPOV Y A. J. Anal. Chem., 2020, 75(5):563-568.

    16. [16]

      WU Y, JIANG Z, HU B, DUAN J. Talanta, 2004, 63(3):585-592.

    17. [17]

    18. [18]

    19. [19]

      NIU G, SHI Q, XU M, LAI H, LIN Q, LIU K, DUAN Y. Appl. Spectrosc., 2015, 69(10):1190-1198.

    20. [20]

      SHENG L, ZHANG T, NIU G, KANG W, TANG H, DUAN Y, HUA L. J. Anal. Atom.Spectrom., 2015, 30(2):453-458.

    21. [21]

    22. [22]

      ZHAN X, ZHAO Z, YUAN X, WANG Q, LI D,XIE H, LI X, ZHOU M, DUAN Y. Anal. Chem., 2013, 85(9):4512-4519.

    23. [23]

      SHOW A A, YO M, NOMANBHAY S P L. Environ. Res., 2021, 197(15):111204.

    24. [24]

    25. [25]

      LI J, WANG J, LEI B, ZHANG T, TANG J, WANG Y, ZHAO W, DUAN Y. Adv.Sci., 2020, 7(6):1902616.

    26. [26]

      LI J, LEI B, WANG J, XU B, RAN S, WANG Y, ZHANG T, TANG J, ZHAO W, DUAN Y. Commun. Phys., 2021, 4(1):64.

    27. [27]

      ARNE B. Atom. Spectrosc., 2008, 63(9):917-928.

    28. [28]

      KRZYSZTOF SWIDERSKI A D, PIOTR J, PAWEL P. J. Anal. Atom. Spectrom., 2018, 33(3):437-451.

    29. [29]

    30. [30]

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    16. [16]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    17. [17]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    18. [18]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

Metrics
  • PDF Downloads(18)
  • Abstract views(560)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return