Citation: DAI Jian-Xiong,  YANG Yan-Ting,  YU Hao,  DUAN Yi-Xiang. A Novel Plasma Jet Atomic Emission Spectrometer and Its Application in Rapid Detection of Elements in Rice[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1686-1693. doi: 10.19756/j.issn.0253-3820.210490 shu

A Novel Plasma Jet Atomic Emission Spectrometer and Its Application in Rapid Detection of Elements in Rice

  • Corresponding author: DUAN Yi-Xiang, yduan@scu.edu.cn
  • Received Date: 8 May 2021
    Revised Date: 28 June 2021

    Fund Project: Supported by the Special Project of Major Scientific Instruments and Equipment in Sichuan Province, China (No.2019ZDZX0036) and the Key Research and Development Program of Shaanxi Province, China (No.2019ZDLSF01-03).

  • A novel direct analysis technology for solid samples using an atomic emission spectrometer based on microwave plasma called plasma jet atomic emission spectrometer (PJ-AES) was developed for the first time. In the work, PJ-AES was used for the rapid detection of cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), phosphorus (P), silicon (Si) and other inorganic elements in rice. The linear range, sensitivity, stability and other properties of the PJ-AES were systematically investigated. As a result, the linear range of heavy metal element Cd (228.80 nm) was 0.03-1.72 mg/kg, and the linear correlation coefficient (R2) was 0.998, the detection limit was 0.009 mg/kg. A total of 8 groups of rice standard samples with a Cd concentration of 0.22 mg/kg were detected, and the relative standard deviation (RSD) of the signal intensity at 228.80 nm (Cd) was 2.8%. Finally, the method was used for quantitative detection of Cd in real samples and the obtained results were compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the PJ-AES was suitable for rapid, accurate, qualitative and quantitative detection of Cd in rice. The development of this technology provided a new direct analysis and detection method for solid samples for atomic spectroscopy. This method showed many advantages such as fast analysis speed, simple sample processing, small size, low cost, and accurate detection.
  • 加载中
    1. [1]

      KELSON J R, SHAMBERGER R. J. Clin. Chem., 2019, 24(2):240-244.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      OZBEK N, TINAS H, ATESPARE A E. Microchem. J., 2019, 144(1):474-478.

    7. [7]

      SCHILD M, GUNDLACH-GRAHAM A, MENON A, JEVTIC J, PIKELJA V, TANNER M, HATTENDORF B, GVNTHER D. Anal. Chem., 2018, 90(22):13443-13450.

    8. [8]

      HUANG M, HIRABAYASHI A, SHIRASAKI T, KOIZUMI H. Anal. Chem., 2000, 72(11):2463-2467.

    9. [9]

      HANNA S N, JONES B T. Appl. Spectrosc. Rev., 2011, 46(8):624-635.

    10. [10]

      RAJAPAKSA A, QI A, YEO L Y, COPPEL R, FRIEND J R. Lab. Chip, 2014, 14(11):1858-1865.

    11. [11]

      DIAS L F, MIRANDA G R, SAINT'PIERRE T D, MAIA S M, FRESCURA V L A, CURTIUS A J. Spectrochim. Acta, Part B, 2005, 60(1):117-124.

    12. [12]

    13. [13]

      STANKOVA A, GILON N, DUTRUCH L, KANICKY V J. Anal. Atom. Spectrom., 2011, 26(2):443-449.

    14. [14]

    15. [15]

      ESKINA V, FILATOVA, D G, BARANOVSKAYA V B, KARPOV Y A. J. Anal. Chem., 2020, 75(5):563-568.

    16. [16]

      WU Y, JIANG Z, HU B, DUAN J. Talanta, 2004, 63(3):585-592.

    17. [17]

    18. [18]

    19. [19]

      NIU G, SHI Q, XU M, LAI H, LIN Q, LIU K, DUAN Y. Appl. Spectrosc., 2015, 69(10):1190-1198.

    20. [20]

      SHENG L, ZHANG T, NIU G, KANG W, TANG H, DUAN Y, HUA L. J. Anal. Atom.Spectrom., 2015, 30(2):453-458.

    21. [21]

    22. [22]

      ZHAN X, ZHAO Z, YUAN X, WANG Q, LI D,XIE H, LI X, ZHOU M, DUAN Y. Anal. Chem., 2013, 85(9):4512-4519.

    23. [23]

      SHOW A A, YO M, NOMANBHAY S P L. Environ. Res., 2021, 197(15):111204.

    24. [24]

    25. [25]

      LI J, WANG J, LEI B, ZHANG T, TANG J, WANG Y, ZHAO W, DUAN Y. Adv.Sci., 2020, 7(6):1902616.

    26. [26]

      LI J, LEI B, WANG J, XU B, RAN S, WANG Y, ZHANG T, TANG J, ZHAO W, DUAN Y. Commun. Phys., 2021, 4(1):64.

    27. [27]

      ARNE B. Atom. Spectrosc., 2008, 63(9):917-928.

    28. [28]

      KRZYSZTOF SWIDERSKI A D, PIOTR J, PAWEL P. J. Anal. Atom. Spectrom., 2018, 33(3):437-451.

    29. [29]

    30. [30]

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    16. [16]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    17. [17]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    18. [18]

      Changsheng An Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(18)
  • Abstract views(734)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return