Citation: GAO Xiao-Mei,  YIN Xin-Chi,  TAN Si-Yuan,  DAI Xin-Hua,  GONG Xiao-Yun,  GONG Ai-Jun. Recent Advances in Supercharging of Proteins During Electrospray Ionization[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1607-1618. doi: 10.19756/j.issn.0253-3820.210485 shu

Recent Advances in Supercharging of Proteins During Electrospray Ionization

  • Corresponding author: GONG Xiao-Yun,  GONG Ai-Jun, 
  • Received Date: 7 May 2021
    Revised Date: 21 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21927812) and the Fundamental Research Operating Expenses of the National Institute of Metrology, China (No.AKY1932).

  • Electrospray ionization (ESI) is one of the most commonly used mass spectrometry ionization techniques for biomolecules at present. Biological macromolecules such as proteins can carry multiple charges and form multiply charged ions during ESI. The formation of multiply charged protein ions can effectively reduce the mass-to-charge ratio (m/z) of the ions to be measured, expand the range of molecular weights detectable and improve the detection sensitivity, which brings more convenience to mass spectrometry analysis of biological macromolecules. Recently, several methods have been proposed to further increase the charge of protein ions during ESI, and these methods has been called supercharging of proteins. In this paper, several methods for supercharging of proteins developed recently are systematically classified and summarized, the ionization mechanism and influencing factors of these methods are reviewed, and their applications are also introduced.
  • 加载中
    1. [1]

      CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.

    2. [2]

      DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.

    3. [3]

      MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.

    4. [4]

      FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.

    5. [5]

      BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.

    6. [6]

      WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.

    7. [7]

      WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.

    8. [8]

      IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.

    9. [9]

      IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.

    10. [10]

      IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.

    11. [11]

      HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.

    12. [12]

      KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.

    13. [13]

      HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.

    14. [14]

      METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.

    15. [15]

      METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.

    16. [16]

      TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.

    17. [17]

      DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.

    18. [18]

      LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.

    19. [19]

      ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.

    20. [20]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    21. [21]

      WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.

    22. [22]

      HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.

    23. [23]

      NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.

    24. [24]

      BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.

    25. [25]

      WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.

    26. [26]

      FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.

    27. [27]

      KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.

    28. [28]

      FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.

    29. [29]

      ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.

    30. [30]

      YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.

    31. [31]

      KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.

    32. [32]

      MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.

    33. [33]

      KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.

    34. [34]

      SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.

    35. [35]

      LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.

    36. [36]

      MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.

    37. [37]

      ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.

    38. [38]

      WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.

    39. [39]

      VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.

    40. [40]

      COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.

    41. [41]

      MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.

    42. [42]

      GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.

    43. [43]

      SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.

    44. [44]

      SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.

    45. [45]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    46. [46]

      SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.

    47. [47]

      CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.

    48. [48]

      MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.

    49. [49]

      MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.

    50. [50]

      MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.

    51. [51]

      MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.

    52. [52]

      FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.

    53. [53]

      ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.

    54. [54]

      CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.

    55. [55]

      WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.

    56. [56]

      NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.

    57. [57]

      GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.

    58. [58]

      GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.

    59. [59]

      FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.

    60. [60]

      KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.

    61. [61]

      KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.

    62. [62]

      RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.

    63. [63]

      YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.

    64. [64]

      BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    8. [8]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    9. [9]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    10. [10]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    13. [13]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

Metrics
  • PDF Downloads(19)
  • Abstract views(904)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return