Citation: GAO Xiao-Mei, YIN Xin-Chi, TAN Si-Yuan, DAI Xin-Hua, GONG Xiao-Yun, GONG Ai-Jun. Recent Advances in Supercharging of Proteins During Electrospray Ionization[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1607-1618. doi: 10.19756/j.issn.0253-3820.210485
-
Electrospray ionization (ESI) is one of the most commonly used mass spectrometry ionization techniques for biomolecules at present. Biological macromolecules such as proteins can carry multiple charges and form multiply charged ions during ESI. The formation of multiply charged protein ions can effectively reduce the mass-to-charge ratio (m/z) of the ions to be measured, expand the range of molecular weights detectable and improve the detection sensitivity, which brings more convenience to mass spectrometry analysis of biological macromolecules. Recently, several methods have been proposed to further increase the charge of protein ions during ESI, and these methods has been called supercharging of proteins. In this paper, several methods for supercharging of proteins developed recently are systematically classified and summarized, the ionization mechanism and influencing factors of these methods are reviewed, and their applications are also introduced.
-
-
[1]
CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.
-
[2]
DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.
-
[3]
MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.
-
[4]
FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.
-
[5]
BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.
-
[6]
WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.
-
[7]
WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.
-
[8]
IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.
-
[9]
IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.
-
[10]
IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.
-
[11]
HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.
-
[12]
KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.
-
[13]
HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.
-
[14]
METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.
-
[15]
METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.
-
[16]
TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.
-
[17]
DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.
-
[18]
LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.
-
[19]
ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.
-
[20]
SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.
-
[21]
WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.
-
[22]
HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.
-
[23]
NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.
-
[24]
BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.
-
[25]
WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.
-
[26]
FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.
-
[27]
KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.
-
[28]
FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.
-
[29]
ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.
-
[30]
YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.
-
[31]
KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.
-
[32]
MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.
-
[33]
KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.
-
[34]
SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.
-
[35]
LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.
-
[36]
MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.
-
[37]
ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.
-
[38]
WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.
-
[39]
VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.
-
[40]
COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.
-
[41]
MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.
-
[42]
GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.
-
[43]
SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.
-
[44]
SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.
-
[45]
SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.
-
[46]
SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.
-
[47]
CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.
-
[48]
MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.
-
[49]
MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.
-
[50]
MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.
-
[51]
MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.
-
[52]
FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.
-
[53]
ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.
-
[54]
CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.
-
[55]
WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.
-
[56]
NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.
-
[57]
GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.
-
[58]
GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.
-
[59]
FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.
-
[60]
KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.
-
[61]
KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.
-
[62]
RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.
-
[63]
YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.
-
[64]
BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.
-
[1]
-
-
[1]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[2]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[3]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[4]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[5]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[6]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[7]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[8]
Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039
-
[9]
Hongsheng Tang , Yonghe Zhang , Dexiang Wang , Xiaohui Ning , Tianlong Zhang , Yan Li , Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098
-
[10]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[11]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[12]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[13]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[14]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[15]
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
-
[16]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[17]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[18]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[19]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[20]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[1]
Metrics
- PDF Downloads(18)
- Abstract views(797)
- HTML views(196)