Citation: ZENG Ying-Jie,  ZHI Yu-Liang,  FAN Xian-Guang,  WANG Xin. Design and Evaluation of Integrated Tip-enhanced Raman Spectrometer[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 39-46. doi: 10.19756/j.issn.0253-3820.210483 shu

Design and Evaluation of Integrated Tip-enhanced Raman Spectrometer

  • Corresponding author: FAN Xian-Guang,  WANG Xin, 
  • Received Date: 6 May 2021
    Revised Date: 8 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21974118, 21874113).

  • Tip-enhanced Raman spectroscopy (TERS) is a new analytical technology that combines Raman spectroscopy and scanning probe microscopies (SPM). By enhancing the Raman signal at "hot spots", it is possible to have a deeper understanding of molecular composition and structure, reaction mechanism, and molecular orientation. At present, most of tip-enhanced Raman instruments adopt a split design, which is bulky, expensive and complicated in structure, limiting the popularization of the instrument and the development of related research. In this work, an integrated tip-enhanced Raman spectroscopy instrument was designed and developed, which effectively improved the integration of the instrument, reduced the transmission loss of the optical fiber and reduced the volume and cost of the system. The spectrometer consisted of a laser excitation and Raman collection module, a spectrometer module, and a tip and laser coupled imaging module. The three modules were placed in a closed housing with a volume of 410 mm×305 mm×85 mm. The instrument was optically calibrated using a standard Ne-Ar light source. The resolution of the instrument was 0.56 nm, and the spectral detection range was 640-770 nm. For the Ne-Ar calibration light source, the observed profile was Gaussian lineshape, and the contour of the ν(A1) vibration peak of carbon tetrachloride was a combination of 51% Gaussian and 49% Lorentzian lines. Finally, the tip-enhanced Raman spectrum of 4'-(pyridine-4-yl)-biphenyl-4-yl) methanethiol (4-PBT) molecules was successfully obtained using this spectrometer, which verified the feasibility of the integrated spectrometer and provided technical accumulation for the promotion of tip Raman spectroscopy technology.
  • 加载中
    1. [1]

      STOCKLE R M, SUH Y D, DECKERT V, ZENOBI R. Chem. Phys. Lett., 2000, 318(1-3):131-136.

    2. [2]

      ANDERSON M S. Appl. Phys. Lett., 2000, 76(21):3130-3132.

    3. [3]

      HAYAZAWA N, INOUYE Y, SEKKAT Z, KAWATA S. Opt. Commun., 2000, 183(1-4):333-336.

    4. [4]

      SHENG S X, WU J B, CONG X, LI W B, GOU J, ZHONG Q, CHENG P, TAN P H, CHEN L, WU K H. Phys. Rev. Lett., 2017, 119(19):196803.

    5. [5]

    6. [6]

      ZENG Z, HUANG S, WU D, MENG L, LI M, HUANG T, ZHONG J, WANG X, YANG Z, REN B. J. Am. Chem. Soc., 2015, 137(37):11928-11931.

    7. [7]

      SU H, FENG H, ZHAO Q, ZHANG X, SUN J, HE Y, HUANG S, HUANG T, ZHONG J, WU D, REN B.J. Am. Chem. Soc., 2020, 142(3):1341-1347.

    8. [8]

      HE Z, HAN Z H, KIZER M, LINHARDT R J, WANG X, SINYUKOV A M, WANG J Z, DECKERT V, SOKOLOV A V, HU J, SCULLY M O. J. Am. Chem. Soc., 2019, 141(2):753-757.

    9. [9]

      BUDICH C, NEUGEBAUER U, POPP J, DECKERT V. J. Microsc., 2008, 229(Pt 3):533-539.

    10. [10]

      BONHOMMEAU S, LECOMTE S. ChemPhysChem, 2018, 19(1):8-18.

    11. [11]

    12. [12]

      LEE C, KIM S T, JEONG B G, YUN S J, SONG Y J, LEE Y H, PARK D J, JEONG M S. Sci. Rep., 2017, 7:40810.

    13. [13]

      OKUNO Y, VANTASIN S, YANG I, SON J, HONG J, TANAKA Y Y, NAKATA Y, OZAKI Y, NAKA N. Appl. Phys. Lett., 2016, 108(16):163110.

    14. [14]

      ZHANG R, ZHANG Y, DONG Z C, JIANG S, ZHANG C, CHEN L G, ZHANG L, LIAO Y, AIZPURUA J, LUO Y, YANG J L, HOU J G. Nature, 2013, 498(7452):82-86.

    15. [15]

      SHENG S X, LI W B, GOU J, CHENG P, CHEN L, WU K H. Rev. Sci. Instrum., 2018, 89(5):053107.

    16. [16]

      ZHANG Z L, SUN M T, RUAN P P, ZHENG H R, XU H X. Nanoscale, 2013, 5(10):4151-4155.

    17. [17]

      BALOIS M V, HAYAZAWA N, CHEN C, KAZUMA E, YOKOTA Y, KIM Y, TANAKA T. Jpn. J. Appl. Phys., 2019, 58:SI0801.

    18. [18]

      WANG X, LIU Z, ZHUANG M, ZHANG H, WANG X, XIE Z, WU D, REN B, TIAN Z. Appl. Phys. Lett., 2007, 91(10):101105.

    19. [19]

      FAN Y, JIN D, WU X, FANG H, YUAN X. Sensors, 2020, 20(22):6687.

    20. [20]

      XIA G, CAI X, FENG Z, CHENG L, HU M. Opt. Express, 2020, 28(8):11227-11236.

    21. [21]

      XUE Q, LU F, DUAN M, ZHENG Y, WANG X, CAO D, LIN G, TIAN J. Appl. Opt., 2018, 57(23):6823-6830.

    22. [22]

      PETTINGER B, REN B, PICARDI G, SCHUSTER R, ERTL G. Phys. Rev. Lett., 2004, 92(9):096101.

    23. [23]

      RULL F, SOBRON F. J. Raman Spectrosc., 1994, 25(7-8):693-698.

    24. [24]

      LI M, LV R, HUANG S, DAI Y, ZENG Z, WANG L, REN B. J. Raman Spectrosc., 2016, 47(7):808-812.

    25. [25]

      MCCREERY R L. Raman Spectroscopy for Chemical Analysis. New Jersey:John Wiley & Sons, 2005:52.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    10. [10]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    11. [11]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    12. [12]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    13. [13]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    14. [14]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    15. [15]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    16. [16]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    17. [17]

      Linlin Guo Jinjun Zhang Chengpeng Miao Bojing Liu Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001

    18. [18]

      Fang Li Xiang Wu Bing Li Yougui Li . Design and Practice of Course Ideological and Political Education in Modern Instrumental Analysis Based on the OBE Concept. University Chemistry, 2025, 40(7): 26-33. doi: 10.12461/PKU.DXHX202409020

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(19)
  • Abstract views(820)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return