Citation:
ZENG Ying-Jie, ZHI Yu-Liang, FAN Xian-Guang, WANG Xin. Design and Evaluation of Integrated Tip-enhanced Raman Spectrometer[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(1): 39-46.
doi:
10.19756/j.issn.0253-3820.210483
-
Tip-enhanced Raman spectroscopy (TERS) is a new analytical technology that combines Raman spectroscopy and scanning probe microscopies (SPM). By enhancing the Raman signal at "hot spots", it is possible to have a deeper understanding of molecular composition and structure, reaction mechanism, and molecular orientation. At present, most of tip-enhanced Raman instruments adopt a split design, which is bulky, expensive and complicated in structure, limiting the popularization of the instrument and the development of related research. In this work, an integrated tip-enhanced Raman spectroscopy instrument was designed and developed, which effectively improved the integration of the instrument, reduced the transmission loss of the optical fiber and reduced the volume and cost of the system. The spectrometer consisted of a laser excitation and Raman collection module, a spectrometer module, and a tip and laser coupled imaging module. The three modules were placed in a closed housing with a volume of 410 mm×305 mm×85 mm. The instrument was optically calibrated using a standard Ne-Ar light source. The resolution of the instrument was 0.56 nm, and the spectral detection range was 640-770 nm. For the Ne-Ar calibration light source, the observed profile was Gaussian lineshape, and the contour of the ν(A1) vibration peak of carbon tetrachloride was a combination of 51% Gaussian and 49% Lorentzian lines. Finally, the tip-enhanced Raman spectrum of 4'-(pyridine-4-yl)-biphenyl-4-yl) methanethiol (4-PBT) molecules was successfully obtained using this spectrometer, which verified the feasibility of the integrated spectrometer and provided technical accumulation for the promotion of tip Raman spectroscopy technology.
-
-
-
[1]
STOCKLE R M, SUH Y D, DECKERT V, ZENOBI R. Chem. Phys. Lett., 2000, 318(1-3):131-136.
-
[2]
ANDERSON M S. Appl. Phys. Lett., 2000, 76(21):3130-3132.
-
[3]
HAYAZAWA N, INOUYE Y, SEKKAT Z, KAWATA S. Opt. Commun., 2000, 183(1-4):333-336.
-
[4]
SHENG S X, WU J B, CONG X, LI W B, GOU J, ZHONG Q, CHENG P, TAN P H, CHEN L, WU K H. Phys. Rev. Lett., 2017, 119(19):196803.
-
[5]
-
[6]
ZENG Z, HUANG S, WU D, MENG L, LI M, HUANG T, ZHONG J, WANG X, YANG Z, REN B. J. Am. Chem. Soc., 2015, 137(37):11928-11931.
-
[7]
SU H, FENG H, ZHAO Q, ZHANG X, SUN J, HE Y, HUANG S, HUANG T, ZHONG J, WU D, REN B.J. Am. Chem. Soc., 2020, 142(3):1341-1347.
-
[8]
HE Z, HAN Z H, KIZER M, LINHARDT R J, WANG X, SINYUKOV A M, WANG J Z, DECKERT V, SOKOLOV A V, HU J, SCULLY M O. J. Am. Chem. Soc., 2019, 141(2):753-757.
-
[9]
BUDICH C, NEUGEBAUER U, POPP J, DECKERT V. J. Microsc., 2008, 229(Pt 3):533-539.
-
[10]
BONHOMMEAU S, LECOMTE S. ChemPhysChem, 2018, 19(1):8-18.
-
[11]
-
[12]
LEE C, KIM S T, JEONG B G, YUN S J, SONG Y J, LEE Y H, PARK D J, JEONG M S. Sci. Rep., 2017, 7:40810.
-
[13]
OKUNO Y, VANTASIN S, YANG I, SON J, HONG J, TANAKA Y Y, NAKATA Y, OZAKI Y, NAKA N. Appl. Phys. Lett., 2016, 108(16):163110.
-
[14]
ZHANG R, ZHANG Y, DONG Z C, JIANG S, ZHANG C, CHEN L G, ZHANG L, LIAO Y, AIZPURUA J, LUO Y, YANG J L, HOU J G. Nature, 2013, 498(7452):82-86.
-
[15]
SHENG S X, LI W B, GOU J, CHENG P, CHEN L, WU K H. Rev. Sci. Instrum., 2018, 89(5):053107.
-
[16]
ZHANG Z L, SUN M T, RUAN P P, ZHENG H R, XU H X. Nanoscale, 2013, 5(10):4151-4155.
-
[17]
BALOIS M V, HAYAZAWA N, CHEN C, KAZUMA E, YOKOTA Y, KIM Y, TANAKA T. Jpn. J. Appl. Phys., 2019, 58:SI0801.
-
[18]
WANG X, LIU Z, ZHUANG M, ZHANG H, WANG X, XIE Z, WU D, REN B, TIAN Z. Appl. Phys. Lett., 2007, 91(10):101105.
-
[19]
FAN Y, JIN D, WU X, FANG H, YUAN X. Sensors, 2020, 20(22):6687.
-
[20]
XIA G, CAI X, FENG Z, CHENG L, HU M. Opt. Express, 2020, 28(8):11227-11236.
-
[21]
XUE Q, LU F, DUAN M, ZHENG Y, WANG X, CAO D, LIN G, TIAN J. Appl. Opt., 2018, 57(23):6823-6830.
-
[22]
PETTINGER B, REN B, PICARDI G, SCHUSTER R, ERTL G. Phys. Rev. Lett., 2004, 92(9):096101.
-
[23]
RULL F, SOBRON F. J. Raman Spectrosc., 1994, 25(7-8):693-698.
-
[24]
LI M, LV R, HUANG S, DAI Y, ZENG Z, WANG L, REN B. J. Raman Spectrosc., 2016, 47(7):808-812.
-
[25]
MCCREERY R L. Raman Spectroscopy for Chemical Analysis. New Jersey:John Wiley & Sons, 2005:52.
-
[1]
-
-
-
[1]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[2]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[3]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[4]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[5]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[6]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[7]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[8]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[9]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[10]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[11]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[12]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[13]
Linlin Guo , Jinjun Zhang , Chengpeng Miao , Bojing Liu , Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001
-
[14]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[17]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[18]
Yan Li , Fei Ding , Jing Wang , Jing Nan , Yijun Li , Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097
-
[19]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[20]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(705)
- HTML views(128)