Citation: MING Run-Mian,  ZHANG Cai-Ling,  XIE Liang-Bo,  SHANG Deng-Hui,  LI Yi. Colorimetric Detection of Co2+ Based on Ligand Effect Enhancement for Homogeneous Activation of Peroxymonosulfate[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1515-1522. doi: 10.19756/j.issn.0253-3820.210480 shu

Colorimetric Detection of Co2+ Based on Ligand Effect Enhancement for Homogeneous Activation of Peroxymonosulfate

  • Corresponding author: LI Yi, liyi@tju.edu.cn
  • Received Date: 5 May 2021
    Revised Date: 28 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21874099) and the Natural Science Foundation of Tianjin City of China (No.20YFZCSN01070).

  • Cobalt ion (Co2+) plays an important role in human body. But high concentration of Co2+ can cause a series of diseases. Peroxymonosulfate (PMS) is an oxidant with an asymmetric structure, and a certain concentration of Co2+ can catalyze the activation of PMS to produce active free radicals. Studies have shown that there is ligand effect between Co2+ and Ac-. The introduction of electron donor Ac- into Co2+-PMS accelerates electron transfer, so the catalytic activity of Co2+ towards PMS is enhanced and more sulfate radical (SO4·-) and hydroxyl radical (·OH) are produced, which results in corresponding enhancement of the ability of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. Based on the homogeneous catalytic activity of Co2+ on PMS and the enhanced coordination effect of Ac-, a novel, catalyst free, green and efficient colorimetric detection method for Co2+ was designed in this work. When the concentrations of NaAc, TMB and PMS were 1.0, 0.4 and 0.3 mmol/L, respectively, and the temperature was set at 25℃, the method was specific for the detection of Co2+ and had good anti-interference ability for 20 kinds of interfering ions. The concentration of Co2+ in the concentration range of 0.5-3.0 μmol/L showed a good linear relationship with the absorbance of the system at 652 nm (A652 nm), and the detection limit (S/N=3) was calculated to be 29 nmol/L. Compared with other detection methods for Co2+, this method established a fast, efficient and green platform for Co2+ detection without synthetic materials, large instruments and complex operation procedures.
  • 加载中
    1. [1]

      SHIRANI M, SALARI F, HABIBOLLAHI S, AKBARI A. Microchem. J., 2020, 152:104340.

    2. [2]

      LI H, WANG J, DU J. Talanta, 2021, 223:121712.

    3. [3]

      CAMPBELL J R, ESTEY M P. Clin. Chem. Lab. Med., 2013, 51(1):213-220.

    4. [4]

      MAZUR F, LIU L, LI H, HUANG J, CHANDRAWATI R. Sens. Actuators, B, 2018, 268:182-187.

    5. [5]

      YANG L, ZHEN S J, LIU Z D, HUANG C Z. Anal. Methods, 2014, 6(14):5054-5058.

    6. [6]

      TAN Y, YU J, CUI Y, YANG Y, WANG Z, HAO X, QIAN G. Analyst, 2011, 136(24):5283-5286.

    7. [7]

      DU J, WANG J, HUANG W, DENG Y, HE Y. Anal. Chem., 2018, 90(16):9959-9965.

    8. [8]

      SHAO S, QIAN L, ZHAN X, WANG M, LU K, PENG J, MIAO D, GAO S. Chem. Eng. J., 2020, 382:123005.

    9. [9]

      KANG J, ZHOU L, DUAN X, SUN H, AO Z, WANG S. Matter, 2019, 1(3):745-758.

    10. [10]

      PENG J B, ZHANG C N, ZHANG Y Z, SHAO S, WANG P P, LIU G G, DONG H, LIU D X, SHI J L, CAO Z G, LIU H J, GAO S X. Ecotox. Environ. Safe., 2020, 198:110676.

    11. [11]

      LAI L, ZHOU H, LAI B. Chem. Eng. J., 2018, 349:633-645.

    12. [12]

      ZHOU Z, LIU X, SUN K, LIN C, MA J, HE M, OUYANG W. Chem. Eng. J., 2019, 372:836-851.

    13. [13]

      ANIPSITAKIS G P, DIONYSIOU D D. Environ. Sci. Technol., 2004, 38(13):3705-3712.

    14. [14]

      WANG Z, YUAN R, GUO Y, XU L, LIU J. J. Hazard. Mater., 2011, 190(1-3):1083-1087.

    15. [15]

      LI Z, CHEN Z, XIANG Y, LING L, FANG J, SHANG C, DIONYSIOU D D. Water Res., 2015, 83:132-140.

    16. [16]

    17. [17]

      LI T, ZHAO Z, WANG Q, XIE P, MA J. Water Res., 2016, 105:479-486.

    18. [18]

      SUN L, CHEN D, WAN S, YU Z, LI M. Chem. Eng. J., 2017, 326:1030-1039.

    19. [19]

      CHEN M, ZHU L H, LIU S G, LI R, WANG N, TANG H Q. J. Hazard. Mater., 2019, 371:456-462.

    20. [20]

      LIU R, XU Y, CHEN B. Environ. Sci. Technol., 2018, 52(12):7043-7053.

    21. [21]

      ZHOU X Q, LUO C G, LUO M Y, WANG Q L, WANG J, LIAO Z W, CHEN Z L, CHEN Z Q. Chem. Eng. J., 2020, 381:122587.

    22. [22]

      XU Z, WU T, CAO Y, CHEN C, KE S, ZENG X, LIN P. Chem. Eng. J., 2020, 392:123639.

    23. [23]

      ZHAO R X, LIU A Y, WEN Q L, WU B C, WANG J, HU Y L, PU Z F, LING J, CAO Q. Spectrochim. Acta, Part A, 2021, 254:119628.

    24. [24]

      CELESTINA J J, THARMARAJ P, JEEVIKA A, SHEELA C D. Microchem. J., 2020, 155:104692.

    25. [25]

      ZHAO C, LI X, CHENG C, YANG Y. Microchem. J., 2019, 147:183-190.

    26. [26]

      HU P, LONG M. Appl. Catal., B, 2016, 181:103-117.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(11)
  • Abstract views(812)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return