Citation: WANG Hong-Xia,  LI Ying-Chao,  LI Chun-Sheng,  ZHOU Zhi-Heng,  MA Zhen-Yu,  TIAN Di. Study on Signal Enhancement Technology for Atomic Fluorescence Spectrometry Based on Digital Micromirror Device[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1470-1477. doi: 10.19756/j.issn.0253-3820.210467 shu

Study on Signal Enhancement Technology for Atomic Fluorescence Spectrometry Based on Digital Micromirror Device

  • Corresponding author: LI Chun-Sheng,  TIAN Di, 
  • Received Date: 26 April 2021
    Revised Date: 28 June 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2016YFF0103303).

  • A dispersive detection system based on ultraviolet digital micromirror device (DMD) was used for hydride generation atomic fluorescence spectrometer (HG-AFS) on the basis of the original non-dispersion detection system. The dispersion system was used to suppress the interference when spectral interference from the light source or scattering interference exists. The limit of detection (LOD) of the dispersive system was worse than the non-dispersive one due to the addition of the dispersive components (DMD and grating, etc). In this work, to improve the analytical performance of the dispersive detection method, a cylindrical mirror was installed in front of the photomultiplier tube (PMT), the minimum effective area of the PMT was expanded to enhance the signal intensity, a better fixed location mode of DMD rotation was proposed, and the analysis methods such as peak selection and the instrument parameters affecting the signal intensity were optimized. The results showed that the signal intensity within 180-320 nm was increased more than 2 times, and the spectral resolution was increased more than 1.2 times. Moreover, the emission lines and excitation fluorescence lines of Cd, Te, Sn and Zn were obtained, and the LODs were respectively less than 0.005 ng/mL for Cd, 0.02 ng/mL for Sn, 0.1 ng/mL for As, Bi and Hg, 0.05 ng/mL for Sb, Pb and Te, and 0.2 ng/mL for Se and Zn. The spiked recoveries and the RSDs of As were 93%-101% and 0.6%-3.3% in living and drinking water samples, and 95%-106% and 0.9%-3.4% in food samples, respectively. The LOD and resolution of the dispersive system were effectively improved because of the improvement of the ultraviolet DMD spectrometer, the upgrade of the DMD rotation detection mode and the optimization of the analysis method. As a result, the dispersive system met the detection requirements of toxicological index limits in the Standards for Drinking Water Quality (GB 5749-2006), and also had good accuracy, sensitivity and stability in actual food sample analysis.
  • 加载中
    1. [1]

      BORGES G A, SOUZA G D, LOPERS P S F, CIMINELLI V S T, CALDEIRA C L, RODRIGUES G D. Quim. Nova, 2020, 43(6):697-704.

    2. [2]

      DA COSTA M A P, FRANCA DA SILVA D L, DIAS F D S, SANTOS JUNIOR A D F, LOPES DOS SANTOS W N. Anal. Methods, 2020, 12(13):1711-1719.

    3. [3]

      DENG X, LI R S, DENG S P. J. Fluoresc., 2020, 30(4):949-954.

    4. [4]

    5. [5]

      LIU M T, MAO X F, LIU J X, DING L, NA X, CHEN G Y, QIAN Y Z. At. Spectrosc., 2019, 40(3):83-90.

    6. [6]

      LIU M T, LIU T P, MAO X F, LIU J X, NA X, DING L, QIAN Y Z. Talanta, 2019, 202:178-185.

    7. [7]

      MANSUR E T, BARNES S J, SAVARD D, WEBB P C. Geostand. Geoanal. Res., 2020, 44(1):147-167.

    8. [8]

      FERREIRA S L C, DOS ANJOS J P, FELIX C S A, DA SILVA M M, PALACIO E, CERDA V. TrAC-Trend Anal. Chem., 2019, 110:335-343.

    9. [9]

      LLAVER M, CASADO-CARMONA F A, LUCENA R, CARDENAS S, WUILLOUD R G. Spectrochim. Acta, Part B, 2019, 162:105705.

    10. [10]

      DLP7000 DLP®0.7 XGA 2x LVDS Type A DMD User's Manual. TEXAS INSTRUMENTS.

    11. [11]

    12. [12]

      TAO C, LI C S, LI Y C, WANG H X, ZHANG Y R, ZHOU Z H, MAO X F, MA Z Y, TIAN D. J. Anal. At. Spectrom., 2019, 34(2):413-414.

    13. [13]

    14. [14]

      LI Y C, TIAN D, DING Y, YANG G, LIU K, WANG C H, HAN X. Appl. Spectrosc. Rev., 2018, 53(1):1-35.

    15. [15]

    16. [16]

      KOHUT A, KERI A, HORVATH V, KOPNICZKY J, AJTAI T, HOPP B, GALBACS G, GERETOVSZKY Z. Appl. Surf. Sci., 2020, 531:147268.

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      PHOTOMULTIPLIER TUBES R7154 User's Manual.HAMAMATSU.

    24. [24]

      ROBINSON J W, ARAKTINGI Y E. Anal. Chim. Acta, 1973, 63(1):29-38.

    25. [25]

      HUBBARD D P, MICHEL R G. Anal. Chim. Acta, 1974, 72(2):285-293.

    26. [26]

      DAGNALL R M, THOMPSON K C, WEST T S. Talanta, 1967, 14(5):557-563.

  • 加载中
    1. [1]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(5)
  • Abstract views(673)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return