Citation: LIANG Wei-Xin,  PAN Jia-Chuan,  LIN Chen,  GUO Peng-Ran. Thermal Extraction-emulsion Injection Combining Single Particle-inductively Coupled Plasma-mass Spectrometry for Determination of Sliver Nanoparticles in Food Packaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1572-1579. doi: 10.19756/j.issn.0253-3820.210463 shu

Thermal Extraction-emulsion Injection Combining Single Particle-inductively Coupled Plasma-mass Spectrometry for Determination of Sliver Nanoparticles in Food Packaging

  • Corresponding author: GUO Peng-Ran, prguo@fenxi.com.cn
  • Received Date: 25 April 2021
    Revised Date: 21 June 2021

    Fund Project: Supported by the Key Research Fields Program of Guangdong Province, China (No.2019B020211001) and the Self-financing Projects of Scientific Research of Institute of Analysis, Guangdong Academy of Sciences, China(No.202005).

  • A method for determination of silver nanoparticles (AgNPs) in antibacterial composite food packaging by thermal extraction-emulsion injection combining single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed. The AgNPs were extracted by breaking polyethylene polymer chain using decalin under the conditions of high temperature, and the size distribution, mass and particle concentration of AgNPs were measured by SP-ICP-MS. The method was assessed to obtain the optimal extraction temperature, efficiency and limit of detection, and eventually applied to the determination of actual sample. The results indicated that, the size distribution and particle concentration would not be affected by thermal extraction process, the optimal extraction temperature of two types of antibacterial composite food packaging (film and bags) was 150℃, and the extraction efficiencies were 94.3% and 90.3%, respectively. The limit of detection for particle size was 23 nm. The detection results of actual sample showed the AgNPs contents in 4 types of antibacterial composite food packaging materials were 0.038-4.884 μg/g, the AgNPs ratio and mean size were 0.69%-3.80% and 35.5-85.1 nm, respectively. The proposed method was accurate and rapid for determination of AgNPs in food packaging materials.
  • 加载中
    1. [1]

      ISTIQOLA A, SYAFIUDDIN A. J. Chin. Chem. Soc., 2020, 67(11):1942-1956.

    2. [2]

      CARBONE M, DONIA D T, SABBATELLA G, ANTIOCHIA R J. King Saud Univ. Sci., 2016, 28(4):273-279.

    3. [3]

      HANNON J C, KERRY J P, CRUZ-ROMERO M, AZLIN-HASIM S, MORRIS M, CUMMINS E. Food Addit. Contam., Part A, 2016, 33(1):167-178.

    4. [4]

      MOURA M R, MATTOSO L H C, ZUCOLOTTO V. J. Food Eng., 2012, 109(3):520-524.

    5. [5]

      MORAIS L D O, MACEDO E V, GRANJEIRO J M, DELGADO I F. Crit. Rev. Food Sci. Nutr., 2020, 60(18):3083-3102.

    6. [6]

    7. [7]

      European Food Safety Authority, EFSA J., 2011, 9(2):1999.

    8. [8]

      SUKHANOVA A, BOZROVA S, SOKOLOV P, BERESTOVOY M, KARAULOV A, NABIEV I. Nanoscale Res. Lett., 2018, 13(1):44.

    9. [9]

      GOETZ N, FABRICIUS L, GLAUS R, WEITBRECHT V, GVNTHER D, HUNGERBVHLER K. Food Addit. Contam., Part A, 2013, 30(3):612-620.

    10. [10]

      ECHEGOYEN Y, NERÍN C. Food Chem. Toxicol., 2013, 62:16-22.

    11. [11]

      MACKEVICA A, OLSSON M E, HANSEN S F. J. Nanopart. Res., 2016, 18(1):5.

    12. [12]

      HETZER B, BURCZA A, GRÄF V, WALZ E, GREINER R. Food Control, 2017, 80:113-124.

    13. [13]

      RAMOS K, GÓMEZ-GÓMEZ M M, CÄMARA C, RAMOS L. Talanta, 2016, 151:83-90.

    14. [14]

      FRANZE B, STRENGE I, ENGELHARD C. J. Anal. At. Spectrom., 2017, 32(8):1481-1489.

    15. [15]

    16. [16]

      AZODI M, SULTAN Y, GHOSHAL S. Environ. Sci. Technol., 2016, 50(24):13318-13327.

    17. [17]

      VENKATESAN A K, REED R B, LEE S, BI X, HANIGAN D, YANG Y, RANVILLE J F, HERCKES P, WESTERHOFF P. Bull. Environ. Contam. Toxicol., 2018, 100(1):120-126.

    18. [18]

    19. [19]

      TORRENT L, LABORDA F, MARGUÍ E, HIDALGO M, IGLESIAS M. Anal. Bioanal. Chem., 2019, 411(20):5317-5329.

    20. [20]

      CANDÁS-ZAPICO S, KUTSCHER D J, MONTES-BAYÓN M, BETTMER J. Talanta, 2018, 180:309-315.

    21. [21]

      RUJIDO-SANTOS I, NAVEIRO-SEIJO L, HERBELLO-HERMELO P, BARCIELA-ALONSO M D C, BERMEJO-BARRERA P, MOREDA-PIÑEIRO A. Talanta, 2019, 197:530-538.

    22. [22]

      MACKEVICA A, OLSSON M E, HANSEN S F. J. Nanopart. Res., 2018, 20(1):6.

    23. [23]

    24. [24]

      VIDMAR J, LOESCHNER K, CORREIA M, LARSEN E H, MANSER P, WICHSER A, BOODHIA K, AL-AHMADY Z S, RUIZ J, ASTRUC D. Nanoscale, 2018, 10(25):11980-11991.

    25. [25]

      TABOADA-LÓPEZ M V, ALONSO-SEIJO N, HERBELLO-HERMELO P, BERMEJO-BARRERA P, MOREDA-PIÑEIRO A. Microchem. J., 2019, 148:652-660.

    26. [26]

      LIU F, HU C, ZHAO Q, SHI Y, ZHONG H. Food Addit. Contam., Part A, 2016, 33(11):1741-1749.

    27. [27]

      WUTZEL H, JARVID M, BJUGGREN J M, JOHANSSON A, ENGLUND V, GUBANSKI S, ANDERSSON M R. Polym. Degrad. Stab., 2015, 112:63-69.

    28. [28]

      AMAIS R S, GARCIA E E, MONTEIRO M R, NOGUEIRA A R A, NÓBREGA J A. Microchem. J., 2010, 96(1):146-150.

    29. [29]

      REIDY B, HAASE A, LUCH A, DAWSON K, LYNCH I. Materials, 2013, 6(6):2295-2350.

    30. [30]

      TABOADA-LÓPEZ M V, IGLESIAS-LÓPEZ S, HERBELLO-HERMELO P, BERMEJO-BARRERA P, MOREDA-PIÑEIRO A. Anal. Chim. Acta, 2018, 1018:16-25.

    31. [31]

      ISO TS 19590-2017. Nanotechnologies-size Distribution and Concentration of Inorganic Nanoparticles in Aqueous Media via Single Particle Inductively Coupled Plasma Mass Spectrometry. International Organization for Standardization.

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(7)
  • Abstract views(663)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return