Citation: GUO Xing,  ZHAO Zhong-Jun,  DAI Jian-Xiong,  HE Fei-Yao,  LI Hong,  WANG Jia-Yu,  LIU Wei,  WANG Xin,  ZHANG Xin-Xue,  YANG Yan-Ting,  DUAN Yi-Xiang. Development of A Travelling Wave-based Ion Mobility Spectrometer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1461-1469. doi: 10.19756/j.issn.0253-3820.210458 shu

Development of A Travelling Wave-based Ion Mobility Spectrometer

  • Corresponding author: DUAN Yi-Xiang, yduan@scu.edu.cn
  • Received Date: 23 April 2021
    Revised Date: 21 June 2021

    Fund Project: Supported by the Special Project of Major Scientific Instruments and Equipment in Sichuan Province, China (No.2019ZDZX0036) and the Key Research and Development Program of Shaanxi Province, China (No.2019ZDLSF01-03).

  • Ion mobility spectrometry (IMS) is a rapid separation technique that has been successfully used for detection of chemical warfare agents, drugs and explosives. The key component of IMS is the drift tube, which plays an important role in effectively separating substances. Traditionally, the drift tube is a fixed-length separation space in which the influence of a uniformly applied weak electric field. In this work, the performance of traveling wave ion mobility spectrometer (TWIMS) was characterized by traveling wave voltage amplitudes, traveling wave speeds, ion gate pulse widths and working pressures. When the traveling wave field voltage amplitude was 50 V, the traveling wave field moving speed was 162.5 m/s, the ion gate pulse width was 13 ms, and the working pressure was 170 Pa, the device demonstrated highly analytical performance and achieved an ion mobility resolution comparable to a commercial traveling wave ion mobility time-of-flight mass spectrometry (TWIMS-MS). Finally, reserpine was used to test the linear response range of the TWIMS. The results showed that the linear response range of the TWIMS was greater than two orders of magnitude and the limit of detection could reach 2.5 ng/mL. The device was expected to be used in conjunction with a time-of-flight mass spectrometer.
  • 加载中
    1. [1]

      KARASEK FRANCIS W. Anal. Chem., 1974, 46(8):710A-720A.

    2. [2]

      SMITH D. J. Atmos. Terr. Phys., 1974, 36(4):717-718.

    3. [3]

      CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1376-1390.

    4. [4]

      CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1391-1410.

    5. [5]

      UETRECHT C, ROSE R J, VAN DUIJN E, LORENZEN K, HECK A J R. Chem. Soc. Rev., 2010, 39(5):1633-1655.

    6. [6]

      KANU A B, GRIBB M M, HILL H H. Anal. Chem., 2008, 80(17):6610-6619.

    7. [7]

      KIRK A T, GRUBE D, KOBELT T, WENDT C, ZIMMERMANN S. Anal. Chem., 2018, 90(9):5603-5611.

    8. [8]

      LANGEJUERGEN J, ALLERS M, OERMANN J, KIRK A, ZIMMERMANN S. Anal. Chem., 2014, 86(23):11841-11846.

    9. [9]

      MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.

    10. [10]

      ZALEWSKA A, PAWŁOWSKI W, TOMASZEWSKI W. Forensic Sci. Int., 2013, 226(1):168-172.

    11. [11]

      ZHANG X, IBRAHIM Y M, CHEN T C, KYLE J E, NORHEIM R V, MONROE M E, SMITH R D, BAKER S. Analyst, 2015, 140(20):6955-6963.

    12. [12]

      ATTOUI M, DE LA MORA J F. J. Aerosol Sci., 2016, 100:91-96.

    13. [13]

      RATIU I A, BOCOS-BINTINTAN V, PATRUT A, MOLL V H, TURNER M, THOMAS C L P. Anal. Chim. Acta, 2017, 982:209-217.

    14. [14]

      XIE C, GU L, WU Q, LI L, WANG C, YU J, TANG K. Anal. Chem., 2021, 93(2):859-867.

    15. [15]

      CAMPUZANO I D G, GILES K. TrAC-Trends Anal. Chem., 2019, 120:12.

    16. [16]

      KNUDSEN S B, CHRISTENSEN J H, TOMASI G. Chemom. Intell. Lab. Syst., 2021, 208:104201.

    17. [17]

      ROPARTZ D, FANUEL M, UJMA J, PALMER M, GILES K, ROGNIAUX H. Anal. Chem., 2019, 91(18):12030-12037.

    18. [18]

      GABELICA V, MARKLUND E. Curr. Opin. Chem. Biol., 2018, 42:51-59.

    19. [19]

      ROKUSHIKA S, HATANO H, BAIM M A, HILL H H. Anal. Chem., 1985, 57(9):1902-1907.

    20. [20]

      SPANGLER G E. Anal. Chem., 1993, 65(21):3010-3014.

    21. [21]

      GILES K, PRINGLE S D, WILDGOOSE J L, RUOTOLO B H. Characterising a Travelling Wave-Based Ion Mobility Separator. 54th ASMS Conf. Seattle:American Society for Mass Spectrometry. 2006:248462.

    22. [22]

      RUOTOLO Brandon T, GILES K, HOYES J B, ROBINSON C V. 57th ASMS Conf. Philadelphia:American Society for Mass Spectrometry. 2009:252035.

    23. [23]

      ZHOU M, HUANG C, GILES K, BLACKWELL A E, WYSOCKI V. 60th ASMS Conf. Denver:American Society for Mass Spectrometry. 2011:234921.

    24. [24]

      GALLAGHER R, PATTISON C, RICHARDSON K, TOMCZYK N, PALMER M, WILDGOOSE J L, HEWITT D, WESTON D. 63th ASMS Conf. St. Louis:American Society for Mass Spectrometry. 2015:251435.

    25. [25]

      WILDGOOSE J L, GREEN M R, UJMA J, GILES K, TOMCZYK N. 64th ASMS Conf. San Antonio:American Society for Mass Spectrometry. 2017:289453.

    26. [26]

      UJMA J, RICHARDSON S, GILES K. 66th ASMS Conf. San Diego:American Society for Mass Spectrometry. 2018:294259.

    27. [27]

      FEIDER C L, KRIEGER A, DEHOOG R J, EBERLIN L S. Anal. Chem., 2019, 91(7):4266-4290.

    28. [28]

      DIXIT S M, RICHARDSON K, LANGRIDGE D, GILES K, RUOTOLO B T J. Am. Soc. Mass Spectrom., 2020, 31(4):880-887.

    29. [29]

      SHVARTSBURG A A, RICHARD D S. Anal. Chem., 2008, 80(24):9689-9699.

    30. [30]

      REINECKE T, KIRK A T, AHRENS A, RADDATZ C R, THOBEN C, ZIMMERMANN S. Talanta, 2016, 150:1-6.

    31. [31]

      ZUHLKE M, RIEBE D, BEITZ T, LOHMANNSROBEN H G, ZENICHOWSKI K, DIENER M, LINSCHEID M W. Eur. J. Mass Spectrom., 2015, 21(3):391-402.

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(16)
  • Abstract views(1003)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return