Citation: LI Yu-Jie,  CHAI Hui-Ning,  LU Yuan-Yuan,  TAN Wei-Qiang,  MA Ji-Ping,  ZHANG Guang-Yao,  ZHANG Xue-Ji. Recent Progress and Applications of Optical/Electrochemical Sensors Based on Metal-Organic Frameworks for Water Environmental Detection[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1619-1630. doi: 10.19756/j.issn.0253-3820.210450 shu

Recent Progress and Applications of Optical/Electrochemical Sensors Based on Metal-Organic Frameworks for Water Environmental Detection

  • Corresponding author: CHAI Hui-Ning,  ZHANG Guang-Yao, 
  • Received Date: 20 April 2021
    Revised Date: 4 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21801158), the Natural Science Foundation of Shandong Province, China (No.ZR2020QB092), the China Postdoctoral Science Foundation (No.2021M691689) and the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (Nos.ZKT23, KF2020201, GZRC202025).

  • With the increasing demand for water environmental quality, the development of simple, sensitive and accurate detection technologies for water quality monitoring have become one of research focuses. Metal-organic frameworks (MOFs) are a class of porous coordination polymers self-assembled by metal ions/clusters and organic ligands. Due to the reversible adsorption, high catalytic activity, large surface area, adjustable and diverse structure, MOFs show great potential as optical/electrochemical sensing materials in water environmental detection. In this review, recent progresses in MOFs-based optical/electrochemical sensors are introduced, which focuses on colorimetric, fluorescence, chemiluminescence, electrochemical, electrochemiluminescence and photoelectrochemical sensors. Finally, this review looks forward the future development of MOFs-based optical/electrochemical sensors in water environmental detection.
  • 加载中
    1. [1]

      YANG G L, JIANG X L, XU H, ZHAO B. Small, 2021, 17(22):2005327.

    2. [2]

      PICÓ Y, BARCELÓ D. TrAC-Trends Anal. Chem., 2020, 130:115964.

    3. [3]

      MULLIN L, KATZ D, RIDDELL N, PLUMB R, BURGESS J A, YEUNG L W Y, JOGSTEN I E.TrAC-Trends Anal. Chem., 2019, 118:828-839.

    4. [4]

      ZHANG Y, ZHU Y, ZENG Z T, ZENG G M, XIAO R, WANG Y R, HU Y, TANG L, FENG C L. Coord. Chem. Rev., 2021, 431:213681.

    5. [5]

      WILLNER M R, VIKESLAND P J. J. Nanobiotechnol., 2018, 16:95.

    6. [6]

      TYAGI D, WANG H D, HUANG W C, HUL P, TANG Y F, GUO Z N, OUYANG Z B, ZHANG H. Nanoscale, 2020, 12(6):3535-3559.

    7. [7]

      SCHROEDER V, SAVAGATRUP S, HE M, LIN S B, SWAGER T M. Chem. Rev., 2019, 119(1):599-663.

    8. [8]

      CHEN X Y, PU H H, FU Z P, SUI X Y, CHANG J B, CHEN J H, MAO S. Environ. Sci.:Nano, 2018, 5(8):1990-1999.

    9. [9]

      XIAO M, LIU Z G, XU N X, JIANG L L, YANG M S, YI C Q. ACS Sens., 2020, 5(3):870-878.

    10. [10]

      LIU H W, HU K, YAN D F, CHEN R, ZOU Y Q, LIU H B, WANG S Y. Adv. Mater., 2018, 30(32):1800295.

    11. [11]

      ZHANG H, SHI W Q, GAO N, ZHAO R H, AHMED M M, ZHANG T, LI J P, DU J P, ASEFA T. Sens. Actuators, B, 2019, 296:126633.

    12. [12]

      HUANG N, CHENG Y H, LI H Y, ZHAO L, HE Z Y, ZHAO C, LIU F M, DING L. J. Colloid Interface Sci., 2019, 556:640-649.

    13. [13]

      XU Q, CAI W, LI W K, SREEPRASAD T S, HE Z Y, ONG W J, LI N. Mater. Today Energy, 2018, 10:222-240.

    14. [14]

      YAGHI O M, LI G M, LI H L. Nature, 1995, 378(6558):703-706.

    15. [15]

      WANG D G, LIANG Z B, GAO S, QU C, ZOU R Q. Coord. Chem. Rev., 2020, 404:213093.

    16. [16]

      DING M M, CHEN J, JIANG M W, ZHANG X J, WANG G F. J. Mater. Chem. A, 2019, 7(23):14163-14168.

    17. [17]

      LI Y W, ZHAO T, LU M T, WU Y H, XIE Y B, XU H, GAO J K, YAO J M, QIAN G D, ZHANG Q C. Small, 2019, 15(43):1901940.

    18. [18]

      ZHANG G Y, CHAI H N, TIAN M W, ZHU S F, QU L J, ZHANG X J. Anal. Chem., 2020, 92(10):7354-7362.

    19. [19]

      ZHANG G Y, LI M J, YU K, CHAI H N, XU S H, XU T L, QU L J, ZHANG X J. ACS Appl. Bio Mater., 2021, 4(2):1616-1623.

    20. [20]

      WU G G, MA J P, WANG S S, CHAI H N, GUO L, LI J H, OSTOVAN A, GUAN Y F, CHEN L X. J. Hazard. Mater., 2020, 394:122556.

    21. [21]

      ROJAS S, HORCAJADA P. Chem. Rev., 2020, 120(16):8378-8415.

    22. [22]

      XU G R, AN Z H, XU K, LIU Q, DAS R, ZHAO H L. Coord. Chem. Rev., 2021, 427:213554.

    23. [23]

    24. [24]

      FANG X, ZONG B Y, MAO S. Nano-Micro Lett., 2018, 10(4):64.

    25. [25]

      LIU B, ZHUANG J Y, WEI G. Environ. Sci.:Nano, 2020, 7(8):2195-2213.

    26. [26]

      NIU X H, LI X, LYU Z Y, PAN J M, DING S C, RUAN X F, ZHU W L, DU D, LIN Y H. Chem. Commun., 2020, 56(77):11338-11353.

    27. [27]

      LI X, NIU X H, LIU P, XU X C, DU D, LIN Y H. Sens. Actuators, B, 2020, 321:128546.

    28. [28]

      CHEN J, ZHANG Y, MIAO S Y, WANG M Y, YANG B C. New J. Chem., 2020, 44(29):12579-12585.

    29. [29]

      HOU D Y, YOU Y, WU X H, LI C, WU S, ZHANG C L, XIAN Y Z. Sens. Actuators, B, 2021, 332:129508.

    30. [30]

      WANG Y, LIANG R P, QIU J D. Anal. Chem., 2020, 92(2):2339-2346.

    31. [31]

      ZHANG Y M, SONG J, PAN Q L, ZHANG X, SHAO W H, ZHANG X, QUAN C S, LI J. J. Mater. Chem. B, 2020, 8(1):114-124.

    32. [32]

      WANG Z, YANG J, LI Y S, ZHUANG Q X, GU J L. Dalton Trans., 2018, 47(16):5570-5574.

    33. [33]

      ZHU N F, ZOU Y M, HUANG M L, DONG S B, WU X Y, LIANG G X, HAN Z X, ZHANG Z. Talanta, 2018, 186:104-109.

    34. [34]

      AMIRZEHNI M, HASSANZADEH J, VAHID B. Sens. Actuators, B, 2020, 325:128768.

    35. [35]

      XU W Q, KANG Y K, JIAO L, WU Y, YAN H Y, LI J L, GU W L, SONG W Y, ZHU C Z. Nano-Micro Lett., 2020, 12(1):184.

    36. [36]

      WANG J N, ZHOU Y J, ZENG M Q, ZHAO Y H, ZUO X X, MENG F R, LV F, LU Y. Environ. Res., 2022, 203:111818.

    37. [37]

      CUI Y J, YUE Y F, QIAN G D, CHEN B L. Chem. Rev., 2012, 112(2):1126-1162.

    38. [38]

      KUKKAR D, VELLINGIRI K, KIM K H, DEEP A. Sens. Actuators, B, 2018, 273:1346-1370.

    39. [39]

      WANG X N, LI J L, JIANG C G, HU P, LI B, ZHANG T L, ZHOU H C. Chem. Commun., 2018, 54(94):13271-13274.

    40. [40]

      ZHANG Y M, YUAN S, DAY G, WANGX, YANG X Y, ZHOU H C. Coord. Chem. Rev., 2018, 354:28-45.

    41. [41]

      ORTEGA-GUERRERO A, FUMANAL M, CAPANO G, TAVERNELLI I, SMIT B. Chem. Mater., 2020, 32(10):4194-4204.

    42. [42]

      CHENG C M, ZHANG R L, WANG J H, ZHANG Y, XIONG S S, HUANG Y, YANG M. ACS Appl. Mater. Interfaces, 2020, 12(23):26391-26398.

    43. [43]

      LI X, LIU P, NIU X H, YE K, NI L, DU D, PAN J M, LIN Y H. Nanoscale, 2020, 12(37):19383-19389.

    44. [44]

      LI J L, YUAN S, QIN J S, PANG J D, ZHANG P, ZHANG Y M, HUANG Y Y, DRAKE H F, LIU W R,ZHOU H C. Angew. Chem., Int. Ed., 2020, 59(24):9319-9323.

    45. [45]

      ZENG X L, HU J, ZHANG M, WANG F L, WU L, HOU X D. Anal. Chem., 2020, 92(2):2097-2102.

    46. [46]

      CHENG C M, ZHANG R L, WANG J H, ZHANG Y, WEN C Y, TAN Y H, YANG M. Analyst, 2020, 145(3):797-804.

    47. [47]

      ZHANG Y, YAN B. Talanta, 2019, 197:291-298.

    48. [48]

      ZHANG Y Q, LIU J X, WU X H, TAO W Q, LI Z. Anal. Chim. Acta, 2020, 1131:68-79.

    49. [49]

      XU X Y, YAN B. J. Mater. Chem. C, 2016, 4(7):1543-1549.

    50. [50]

      YANG H S, WANG B, LIU J H, CHENG J, YU L M, YU J M, WANG P L, LI J R, SU X O. Sens. Actuators, B, 2020, 314:128048.

    51. [51]

      LIU C Y, CHEN X R, CHEN H X, NIU Z, HIRAO H, BRAUNSTEIN P, LANG J P. J. Am. Chem. Soc., 2020, 142(14):6690-6697.

    52. [52]

      WEI J Z, WANG X L, SUN X J, HOU Y, ZHANG X, YANG D D, DONG H, ZHANG F M. Inorg. Chem., 2018, 57(7):3818-3824.

    53. [53]

      SUN Y L, GAO P, HAN R, LUO C N, WEI Q. Sens. Actuators, B, 2021, 333:129543.

    54. [54]

      SUN Y, XU X T, ZHAO Y X, TAN H N, LI Y H, DU J X. Talanta, 2020, 209:120582.

    55. [55]

      YU H L, LONG D Y. Microchim. Acta, 2016, 183(12):3151-3157.

    56. [56]

      BAGHAYERI M, GHANEI-MOTLAGH M, TAYEBEE R, FAYAZI M, NARENJI F. Anal. Chim. Acta, 2020, 1099:60-67.

    57. [57]

      LIU S Y, LAI C, LIU X G, LI B S, ZHANG C, QIN L, HUANG D L, YI H, ZHANG M M, LI L, WANG W J, ZHOU X R, CHEN L. Coord. Chem. Rev., 2020, 424:213520.

    58. [58]

      SARAF M, RAJAK R, MOBIN S M. J. Mater. Chem. A, 2016, 4(42):16432-16445.

    59. [59]

      YANG H L, PENGC W, HAN J J, SONG Y H, WANG L. Sens. Actuators, B, 2020, 320:128447.

    60. [60]

      SINGH S, NUMAN A, ZHAN Y Q, SINGH V, HUNG T V, NAM N D. J. Hazard. Mater., 2020, 399:123042.

    61. [61]

      HU R, ZHANG X, CHI K N, YANG T, YANG Y H. ACS Appl. Mater. Interfaces, 2020, 12(27):30770-30778.

    62. [62]

      YU Y J, YU C, NIU Y Z, CHEN J, ZHAO Y L, ZHANG Y C, GAO R F, HE J L. Biosens. Bioelectron., 2018, 101:297-303.

    63. [63]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. Sens. Actuators, B, 2019, 283:487-494.

    64. [64]

      WANG H L, HU Q Q, MENG Y, JIN Z E, FANG Z L, FU Q R, GAO W H, XU L, SONG Y B, LU F S. J. Hazard. Mater., 2018, 353:151-157.

    65. [65]

      LI J, XIA J F, ZHANG F F, WANG Z H, LIU Q Y. Talanta, 2018, 181:80-86.

    66. [66]

      ZHOU J J, LI Y, WANG W J, TAN X C, LU Z C, HAN H Y. Biosens. Bioelectron., 2020, 164:112332.

    67. [67]

      DONG X, ZHAO G H, LIU L, LI X, WEI Q, CAO W. Biosens. Bioelectron., 2018, 110:201-206.

    68. [68]

      GUO W L, DING H, GU C Y, LIU Y H, JIANG X C, SU B, SHAO Y H. J. Am. Chem. Soc., 2018, 140(46):15904-15915.

    69. [69]

      JIN Z C, ZHU X R, WANG N N, LI Y F, JU H X, LEI J P. Angew. Chem., Int. Ed., 2020, 59(26):10446-10450.

    70. [70]

      SHAN X M, PAN T, PAN Y T, WANG W C, CHEN X H, SHAN X L, CHEN Z D. Electroanalysis, 2020, 32(3):462-469.

    71. [71]

      FENG D F, LI P H, TAN X C, WU Y Y, WEI F C, DU F K, AI C H, LUO Y N, CHEN Q Y, HAN H Y. Anal. Chim. Acta, 2020, 1100:232-239.

    72. [72]

    73. [73]

      ZHANG L X, FENG L P, LI P, CHEN X, JIANG J T, ZHANG S, ZHANG C X, ZHANG A C, CHEN G F, WANG H. Chem. Eng. J., 2020, 395:125072.

    74. [74]

      CAO Y, WANG L N, WANG C Y, HU X Y, LIU Y L, WANG G X. Electrochim. Acta, 2019, 317:341-347.

    75. [75]

      ZHANG Q S, WANG J, KIRILLOV A M, DOU W, XU C, XU C L, YANG L Z, FANG R, LIU W S. ACS Appl. Mater. Interfaces, 2018, 10(28):23976-23986.

    76. [76]

      WU S Y, MIN H, SHI W, CHENG P. Adv. Mater., 2020, 32(3):1805871.

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    11. [11]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(27)
  • Abstract views(910)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return