Citation: WANG Wei-Min,  JIN Liu-Yu,  QIAN Bing-Jun,  XU Fu-Xing,  DING Chuan-Fan. Optimization Procedure of Mass Range for Electron Impact Ion Source Ion Trap Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 198-205. doi: 10.19756/j.issn.0253-3820.210442 shu

Optimization Procedure of Mass Range for Electron Impact Ion Source Ion Trap Mass Spectrometry

  • Corresponding author: XU Fu-Xing,  DING Chuan-Fan, 
  • Received Date: 16 April 2021
    Revised Date: 21 September 2021

    Fund Project: Supported by the National Natural Science Found of China (Nos.21803013, 21927805) and the Dalian Institute of Chemical Physics Fund, Chinese Academy of Sciences (Nos.DICP ZZBS201701, DICP I201951)

  • Electron impact ion source (EI) is a kind of highly efficient ionization source that can be used in vacuum. The ionization efficiency of EI can reach 0.1%, and EI can ionize almost all substances. In recent years, the development of electron impact ion source-ion trap mass spectrometry (EI-ITMS) has made great progress, which makes portable gas chromatograph-mass spectrometer (GC-MS) widely used in the rapid qualitative and quantitative detection of toxic and harmful substances. However, the performance debugging of EI-ITMS instrument is still very complicated. Firstly, the ion transmission efficiency of EI needs to set up a suitable lens voltage. Secondly, EI ionization will produce a large number of fragmented ions. To ensure the best mass range, it is necessary to continuously fine tune the relevant voltage parameters of the ion trap mass analyzer. In this work, a set of mass range optimization debugging program was established on the basis of homemade EI-ITMS devices. The developed EI-ITMS were connected in the axial direction. The gas sample entered the EI source through a 75-μm quartz capillary tube, and then the generated ions were accelerated and focused under the action of the extraction electrode system and flowed to the ion trap. The frontcap voltage of the ion trap was used as the gate to control the entry of ions. The parameters of the EI were optimized, and the motion trajectory and transmission efficiency of the ions under the experimental conditions were simulated using simion software. The established mass range optimization program was helpful to alleviate the mass discrimination effect of ion trap mass analyzer and realized the analysis of small mass fragments produced by EI ionization. Experiments showed that the established program could successfully optimize the detection of acetone fragment ion m/z 43 and perfluorotributylamine fragment ion m/z 414. This work laid a foundation for the introduction of chromatographic analysis.
  • 加载中
    1. [1]

      SETO Y. On-site Detection of Chemical Warfare Agents. In Handbook of Toxicology of Chemical Warfare Agents, Elsevier, 2020: 983-1003.

    2. [2]

      BARFIDOKHT A, MISHRA R K, SEENIVASAN R, LIU S, HUBBLE L J, WANG J, HALL D A. Sens. Actuators, B, 2019, 296: 126422.

    3. [3]

      SEDDAOUI N, AMINE A. Talanta, 2021, 230: 122346.

    4. [4]

      MANCINI D, PERCOT A, BELLOT-GURLETELLOT L, COLOMBAN P, CARNAZZA P. Talanta, 2021, 227: 122159.

    5. [5]

      HILL H H, MARTIN S J. Pure Appl. Chem., 2002, 74(12): 2281-2291.

    6. [6]

      MEUZELAAR H, DWORZANSKI J P, ARNOLD N S, MCCLENNEN W H, WAGER D J. Field Anal. Chem. Technol., 2015, 4(1): 3-13.

    7. [7]

      CONTRERAS J A, MURRAY J A, TOLLEY S E, OLIPHANTJ L, TOLLEY H D, LAMMERT S A, LEE E D, LATER D W, LEE M L. J. Am. Soc. Mass Spectrom., 2008, 19(10): 1425-1434.

    8. [8]

      TRUONG T V, SADOWSKI C S, PORTER N L, RANDS A D, RICHTER B E, BRANDE T, LATER D W,LEE M L. Scient Chromatogr., 2014, 6(1): 13-26.

    9. [9]

      SMITH P A, LEPAGE C J, LUKACS M, MARTIN N, SHUFUTINSKY A, SAVAGE P B. Int. J. Mass Spectrom., 2010, 295(3): 1387-3806.

    10. [10]

      GUO Q, GAO L, ZHAI Y, XU W. Chin. Chem. Lett., 2018, 29: 1578-1584.

    11. [11]

      BOUCHONNET S. Introduction to GC-MS Coupling. CRC Press: New York, 2013.

    12. [12]

      JONSCHER K R, YATES J R. Anal. Biochem., 1997, 244(1): 1-15.

    13. [13]

      XU F, XU C, DING L, ZHOU M, DING C F. Int. J. Mass Spectrom., 2018, 428: 29-34.

    14. [14]

      DING L, SUDAKOV M, KUMASHIRO S. Int. J. Mass Spectrom., 2002, 221(2): 117-138.

    15. [15]

      WANG Y, SCHUBERT M, INGENDOH A, FRANZEN J. Rapid Commun. Mass Spectrom., 2000, 14(1): 12-17.

    16. [16]

      SPLENDORE M, LAUSEVIC M, LAUSEVIC Z, MARCH R. Rapid Commun. Mass Spectrom.,1997, 11(2): 228-233.

    17. [17]

      BLAIN M G, RITER L S, CRUZ D, AUSTIN D E, WU G, PLASS W R, COOKS R G. Int. J. Mass Spectrom., 2004, 236(1-3): 91-104.

  • 加载中
    1. [1]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    2. [2]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    6. [6]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    12. [12]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    16. [16]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    20. [20]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(9)
  • Abstract views(1120)
  • HTML views(260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return