Citation: XIONG Ying-Ying,  CHENG Meng-Xia,  LU Hao-Jie. Research Progress of N-Glycome Enrichment Methods[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1597-1606. doi: 10.19756/j.issn.0253-3820.210427 shu

Research Progress of N-Glycome Enrichment Methods

  • Corresponding author: LU Hao-Jie, luhaojie@fudan.edu.cn
  • Received Date: 9 April 2021
    Revised Date: 10 August 2021

    Fund Project: Supported by the Natural National Key Research and Development Program (Nos.2016YFA0501303, 2017YFA0505001) and the National Natural Science Foundation of China (No.21974025).

  • Glycosylation is an important post-translational modification of proteins. Modification by glycans makes the functions of proteins diverse. As one of the main glycosylation types of proteins, N-glycosylation is closely involved in many life activities and plays a critical role in the occurrence and development of diseases. Therefore, it is of great significance to study the N-glycans on glycoproteins. Mass spectrometry technology is one of the most powerful tools for studying N-glycome. However, due to the complex structure, low abundance and low ionization efficiency of glycans in mass spectrometry, the research of N-glycome based on mass spectrometry still faces great challenges. The separation and enrichment of N-glycans is essential for the analysis of N-glycans by mass spectrometry. This article briefly introduces the process of N-glycan analysis based on mass spectrometry, focusing on the overview of N-glycan separation and enrichment methods, and summarizes the advantages and disadvantages of these methods and discusses the application and contribution of these various technologies in biomedical research.
  • 加载中
    1. [1]

      HART G W, HOUSLEY M P, SLAWSON C. Nature, 2007, 446(7139):1017-1022.

    2. [2]

      DUTTA D, MANDAL C, MANDAL C. Biochim. Biophys. Acta, 2017, 1861(12):3096-3108.

    3. [3]

      KAILEMIA M J, XU G G, WONG M, LI Q Y, GOONATILLEKE E, LEON F, LEBRILLA C B. Anal. Chem., 2018, 90(1):208-224.

    4. [4]

      BROERSEN K, VORAGEN A G J, HAMER R J, DE JONGH H H J. Biotechnol. Bioeng., 2004, 86(1):78-87.

    5. [5]

    6. [6]

    7. [7]

      LAWLER P R, MORA S. Circ. Res., 2016, 119(11):1154-1156.

    8. [8]

      VERHELST X, DIAS A M, COLOMBEL J F, VERMEIRE S, VAN VLIERBERGHE H, CALLEWAERT N, PINHO S S. Gastroenterology, 2020, 158(1):95-110.

    9. [9]

      REILY C, STEWART T J, RENFROW M B, NOVAK J. Nat. Rev. Nephrol., 2019, 15(6):346-366.

    10. [10]

      EVEREST-DASS A V, MOH E S X, ASHWOOD C, SHATHILI A M M, PACKER N H. Expert Rev. Proteomics, 2018, 15(4):341-352.

    11. [11]

      NGUYEN A T, CHIA J, ROS M, HUI K M, SALTEL F, BARD F. Cancer Cell, 2017, 32(5):639.

    12. [12]

      MAGALHAES A, DUAETE H O, REIS C A. Cancer Cell, 2017, 31(6):733-735.

    13. [13]

      AGRAWAL P, FONTANALS B, SOKOLOVA E, JACOB S, VAIANA C A, MCDERMOTT M, ARGIBAY D, DARVIAHIAN F, CASTILLO M, UEBERHEIDE B, OSMAN I, FENYO D, MAHAL L K, HERNANDO E. Glycobiology, 2016, 26(12):1447-1448.

    14. [14]

      LIU Y S, HE J T, LI C. J. Proteome Res., 2010, 9(2):798-805.

    15. [15]

    16. [16]

    17. [17]

      RUHAAK L R, XU G G, LI Q Y, GOONATILLEKE E, LEBRILLA C B. Chem. Rev., 2018, 118(17):7886-7930.

    18. [18]

      LU H J, ZHANG Y, YANG P Y. Natl. Sci. Rev., 2016, 3(3):345-364.

    19. [19]

      ZHANG Q W, LI Z, WANG Y W, ZHENG Q, LI J. J. Mass Spectrom. Rev., 2018, 37(5):652-680.

    20. [20]

      ZHANG Y, PENG Y, YANG L J, LU H J. TrAC-Trends Anal. Chem., 2018, 99:34-46.

    21. [21]

      DONG X, HUANG Y F, CHO B G, ZHONG J Q, GAUTAM S, PENG W J, WILLIAMSON S D, BANAZADEH A, TORRES-ULLOA K Y, MECHREF Y. Electrophoresis, 2018, 39(24):3063-3081.

    22. [22]

      RAMBIHAR C, KERMAN K. Talanta, 2010, 81(4-5):1676-1680.

    23. [23]

      GONZALEZ Z M, MENDOZA H G, XOLALPA W, PARADA C, VALLECILLO A J, BIGI F, ESPITIA C. J. Proteome Res., 2009, 8(2):721-733.

    24. [24]

      FANAYAN S, HINCAPIE M, HANCOCK W S. Electrophoresis, 2012, 33(12):1746-1754.

    25. [25]

      TEP S, HINCAPIE M, HANCOCK W S. Anal. Bioanal. Chem., 2012, 402(9):2687-2700.

    26. [26]

      GUAN F, TAN Z Q, LI X, PANG X C, ZHU Y L, LI D L, YANG G. L. Carbohydr. Res., 2015, 416:7-13.

    27. [27]

      ROEMLING R, SAKATA M, KAWAI Y, YAMASAKI H, MORIYAMA H. LC·GC Eur., 2009:40-41.

    28. [28]

      CHEN C C, SU W C, HUANG B Y, CHEN Y J, TAI H C, OBENA R P. Analyst, 2014, 139(4):688-704.

    29. [29]

      QING G Y, YAN J Y, HE X N, LI X L, LIANG X M. TrAC-Trends Anal. Chem., 2020, 124:115570.

    30. [30]

      JIN G W, YU D P, GUO Z M, YANG D, ZHANG H T, SHEN A J, YAN J Y, LIANG X M. RSC Adv., 2016, 6(11):8584-8587.

    31. [31]

    32. [32]

      SELMAN M H J, HEMAYATKAR M, DEELDER A M, WUHRER M. Anal. Chem., 2011, 83(7):2492-2499.

    33. [33]

      KAYILI H M, BARLAS N, ATAKAY M, SALIH B. Microchem. J., 2018, 139:492-499.

    34. [34]

      PENG Y, LV J, YANG L J, WANG D Q, ZHANG Y, LU H J. Anal. Chim. Acta, 2019, 1050:80-87.

    35. [35]

      HUA S, WILLIAMS C C, DIMAPASOC L M, RO G S, OZCAN S, MIYAMOTO S, LEBRILLA C B, AN H J, LEISEROWITZF G S. J. Chromatogr. A, 2013, 1279:58-67.

    36. [36]

      SONG T, ALDREDGE D, LEBRILLA C B. Anal. Chem., 2015, 87(15):7754-7762.

    37. [37]

      MELMER M, STANGLER T, PREMSTALLER A, LINDNER W. J. Chromatogr. A, 2011, 1218(1):118-123.

    38. [38]

      ZHOU S, HUANG Y, DONG X, PENG W J, VEILLON L, KITAGAWA D A S, AQUINO A J A, MECHREF Y. Anal. Chem., 2017, 89(12):6590-6597.

    39. [39]

      GAUTAM S, BANAZADEH A, CHO B G, GOLI M, ZHONG J Q, MECHREF Y. Anal. Chem., 2021, 93(12):5061-5070.

    40. [40]

      QIN H Q, ZHAO L, LI R B, WU R A, ZOU H F. Anal. Chem., 2011, 83(20):7721-7728.

    41. [41]

      QIN H Q, HU Z Y, WANG F J, ZHANG Y, ZHAO L, XU G J, WU R A, ZOU H F. Chem. Commun., 2013, 49(45):5162-5164.

    42. [42]

      SUN N R, DENG C H, LI Y, ZHANG X M. Anal. Chem., 2014, 86(4):2246-2250.

    43. [43]

      LIU Q J, SUN N R, DENG C H. TrAC-Trends Anal. Chem., 2019, 110:66-80.

    44. [44]

      SUN N R, YAO J Z, WANG J W, ZHANG X M, LI Y, DENG C H. RSC Adv., 2016, 6(41):34434-34438.

    45. [45]

      WANG J X, WANG Y A, GAO M X, ZHANG X M, YANG P Y. Anal. Chim. Acta, 2016, 932:41-48.

    46. [46]

      LI X, XU G J, PENG J X, LIU S J, ZHANG H Y, MAO J W, NIU H, LV W P, ZHAO X Y, WU R. ACS Appl. Mater. Interfaces, 2018, 10(14):11896-11906.

    47. [47]

      LARSEN M R, JENSEN S S, JAKOBSEN L A, HEEGAARD N H H. Mol. Cell. Proteomics, 2007, 6(10):1778-1787.

    48. [48]

      PALMISANO G, LENDAL S E, ENGHOLM K K, LETH L R, PARKER B L, LARESN M R. Nat. Protoc., 2010, 5(12):1974-1982.

    49. [49]

      WANG H Y, BIE Z J, LU C C, LIU Z. Chem. Sci., 2013, 4(11):4298-4303.

    50. [50]

      YANG S J, ZHANG H. Anal. Chem., 2012, 84(5):2232-2238.

    51. [51]

      LI L L, JIAO J, CAI Y, ZHANG Y, LU H J. Anal. Chem., 2015, 87(10):5125-5131.

    52. [52]

      ZHANG Y, PENG Y, BIN Z C, WANG H J, LU H J. Anal. Chim. Acta, 2016, 934:145-151.

    53. [53]

      WANG Y Y, CAI Y, ZHANG Y, LU H J. Anal. Chim. Acta, 2019, 1089:90-99.

    54. [54]

      PEDOWITZ N J, PRATT M R. RSC Chem. Biol., 2021, 2(2):306-321.

    55. [55]

      XIONG Y T, LI X L, LI M M, QIN H J, CHEN C, WANG D D, WANG X, ZHENG X T, LIU Y H, LIANG X M, QING G Y. J. Am. Chem. Soc., 2020, 142(16):7627-7637.

    56. [56]

      BIE Z J, CHEN Y, YE J, WANG S S, LIU Z. Angew. Chem., Int. Ed., 2015, 54(35):10211-10215.

    57. [57]

    58. [58]

      CHENG M X, SHU H, PENG Y, FENG X X, YAN G Q, ZHANG L, YAO J, BAO H M, LU H J. Anal. Chem., 2021, 93(13):5537-5546.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    3. [3]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    13. [13]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(19)
  • Abstract views(638)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return