Citation: JIANG Ze,  ZHANG Xuan,  LIU Jin-Hui,  WEI Xing,  CHEN Ming-Li,  WANG Jian-Hua. Construction of Human Blood-Brain Barrier in Vitro and Permeability Evaluation of Metal Ions or Metal Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1657-1665. doi: 10.19756/j.issn.0253-3820.210406 shu

Construction of Human Blood-Brain Barrier in Vitro and Permeability Evaluation of Metal Ions or Metal Nanoparticles

  • Corresponding author: CHEN Ming-Li,  WANG Jian-Hua, 
  • Received Date: 1 April 2021
    Revised Date: 16 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21727811, 21922402), the Fundamental Research Funds for the Central Universities (Nos.N2005003, N2105017), the Liaoning Revitalization Talents Program (No.XLYC1802016) and the Innovative Talents Support Program for Universities of Liaoning Province, China (No.ZX20200088).

  • An in vitro blood-brain barrier (BBB) microfluidic chip was constructed to evaluate the transmittance of metal and metal nanoparticles. By combining with the "sandwich" blood-brain barrier model, the concentration gradient generation unit was integrated on the chip to realize permeability evaluation of metal-related components at different concentrations. bEnd.3 cells were employed as BBB model cells, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure metal ions and metal nanoparticles trans-membrane and barrier absorption in the model in vitro. The mixing effect of the fluid in the chip channel was theoretically simulated by Comsol simulation software. The actual mixing effect was evaluated with samples including cadmium and Rhodamine B solution, and the reliability of the concentration gradient generation unit of the actual sample was evaluated by atomic absorption spectroscopy. In the barrier permeability evaluation experiment, the BBB permeability of sodium fluorescein was (5.45±0.48)×10-6 cm/s, which was basically consistent with the previous research. The chip could generate stable concentration generation, realize in vitro simulation of BBB organs and evaluation of metal permeability, which was expected to be used in the future in the central nervous system drug screening and metal, nanoparticle neurotoxicity assessment and other fields.
  • 加载中
    1. [1]

      BOOTH R, KIM H. Lab Chip, 2012, 12(10):1784-1792.

    2. [2]

      PARDRIDGE W M, OLDENDORF W H, CANCILLA P, FRANK H J L. Ann. Intern. Med., 1986, 105(1):82-95.

    3. [3]

      FERRI C P, PRINCE M, BRAYNE C, BRODATY H, FRATIGLIONI L, GANGULI M, HALL K, HASEGAWA K, HENDRIE H, HUANG Y, JORM A, MATHERS C, MENEZES P R, RIMMER E, SCAZUFCA M. Lancet, 2005, 366(9503):2112-2117.

    4. [4]

      PANGALOS M N, SCHECHTER L E, HURKO O. Drug Discov. Today, 2007, 6(10):521-532.

    5. [5]

      YU L Y, LI R L, WU H L, ZHANG S F, CHAI M W, SHEN X X, HONG M, LIN H. Chin. J. Anal. Chem., 2020, 48(8):e20098-e20106.

    6. [6]

      BOONSTRA E, DE KLEIJN R, COLZATO L S, ALKEMADE A, FORSTMANN B U, NIEUWENHUIS S. Front. Psychol., 2015, 6(10):1520-1525.

    7. [7]

      ZHENG W, ASCHNER M, GHERSI-EGEA J F. Toxicol. Appl. Pharmacol., 2003, 192(1):1-11.

    8. [8]

      GRIEP L M, WOLBERS F, DE WAGENAAR B, TER BRAAK P M, WEKSLER B B, ROMERO I A, COURAUD P O, VERMES I, MEER A D, BERG A. BIOMED. Microdevices, 2013, 15(1):145-150.

    9. [9]

      WALTER F R, VALKAI S, KINCSES A, PETNEHÁZI A, CZELLER T, VESZELKA S, ORMOS P, DELI M A, DER A. Sens. Actuators, B, 2016, 222(1):1209-1219.

    10. [10]

      SHIN Y, HAN S, JEON J S, YAMAMOTO K, CHUNG S. Nat. Protoc., 2012, 7(7):1247-1259.

    11. [11]

      SUNG K E, GUI S, PEHLKE C, TRIER S M, ELICEIRI K W, KEELY P J, FRIEDL A, BEEBE D J. Biomaterials, 2009, 30(27):4833-4841.

    12. [12]

      BROWN J A, PENSABENE V, MARKOV D A, ALLWARDT V, NEELY M D, SHI M, BRITT C M, HOILETT O S, YANG Q, BREWER B M. Biomicrofluidics, 2015, 9(5):054124.

    13. [13]

      GRIEP L M, WOLBERS F, DE WAGENAAR B, TER BRAAK P M, WEKSLER B B, ROMERO I A, COURAUD P O, VERMES I, VAN DER MEER A D, VAN DER BERG A. Biomed. Microdevices, 2013, 15(1):145-150.

    14. [14]

      ODDO A, PENG B, TONG Z, WEI Y, TONG W Y, THISSEN H, VOELCKER N H. Trends Biotechnol., 2019; 37(12):1295-1314.

    15. [15]

      WEVERS N R, VAN VUGHT R, WILSCHUT K J, NICOLAS A, CHIANG C, LANZ H L, TRIETSCH S J, JOORE J, VULTO P. Sci. Rep., 2016, 6(12):38856.

    16. [16]

      ADRIANI G, MA D, PAVESI A, KAMM R D, GOH E L K. Lab Chip, 2017, 17(3):448-459.

    17. [17]

      PRABHAKARPANDIAN B, SHEN M C, NICHOLS J B, MILLS I R, SIDORYK-WEGRZYNOWICZ M, ASCHNER M, PANT K. Lab Chip, 2013, 13(6):1093-1101.

    18. [18]

      MAX I B, PETER C S. Integr. Biol., 2016, 8(9):976-984.

    19. [19]

      WOLFF A, ANTFOLK M, BRODIN B, TENJE M. J. Pharm. Sci., 2015, 104(9):2727-2746.

    20. [20]

      HUANG Q S, MAO S F, KHAN M Z, LIN J M. Chem. Commun., 2018, 54(21):2595-2598.

    21. [21]

      ZHANG X, WEI X, MEN X, JIANG Z, YE W Q, CHEN M L, YANG T, XU Z R, WANG J H. Anal. Chem., 2020, 92(9):6604-6612.

    22. [22]

      MAO S F, ZHANG W L, HUANG Q S, KHAN M, LI H F, KATSUMI U, LIN J M. Angew. Chem., Int. Ed,, 2017, 57(1):236-240.

    23. [23]

      TOMITA S, SAKAO M, KURITA R, NIWA O, YOSHIMOTO K. Chem. Sci., 2015, 6(10):5831-5836.

    24. [24]

      WEI X, ZHANG X, GUO R, CHEN M L, YANG T, XU Z R, WANG J H. Anal. Chem., 2019, 91(24):15826-15832.

    25. [25]

      SHEN S F, ZHANG X, ZHANG F J, WANG D F, LONG D D, NIU Y B. Talanta, 2020, 208(2):120477.

    26. [26]

      FENG D S, XU T R, LI H, SHI X Z, XU G W. J. Anal. Test., 2020, 4:198-209.

    27. [27]

      SHAO X J, GAO D, CHEN Y L, JIN F, HU G N, JIANG Y Y, LIU H X. Anal. Chim. Acta, 2016, 934(8):186-193.

    28. [28]

      WANG J D, KHAFAGY E, KHANAFER K, TAKAYAMA S, ELSAYED M E H. Mol. Pharm., 2016, 13(3):895-906.

    29. [29]

      TOBWALA S, WANG H J, CAREY J, BANKS W, ERCAL N. Toxics, 2014, 2(2):258-275.

    30. [30]

      ZHOU Y, PENG Z, SEVEN E S, LEBLANC R M. J. Controlled Release, 2018, 270(1):290-303.

  • 加载中
    1. [1]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    13. [13]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(15)
  • Abstract views(746)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return