Citation: JIANG Ze,  ZHANG Xuan,  LIU Jin-Hui,  WEI Xing,  CHEN Ming-Li,  WANG Jian-Hua. Construction of Human Blood-Brain Barrier in Vitro and Permeability Evaluation of Metal Ions or Metal Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1657-1665. doi: 10.19756/j.issn.0253-3820.210406 shu

Construction of Human Blood-Brain Barrier in Vitro and Permeability Evaluation of Metal Ions or Metal Nanoparticles

  • Corresponding author: CHEN Ming-Li,  WANG Jian-Hua, 
  • Received Date: 1 April 2021
    Revised Date: 16 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21727811, 21922402), the Fundamental Research Funds for the Central Universities (Nos.N2005003, N2105017), the Liaoning Revitalization Talents Program (No.XLYC1802016) and the Innovative Talents Support Program for Universities of Liaoning Province, China (No.ZX20200088).

  • An in vitro blood-brain barrier (BBB) microfluidic chip was constructed to evaluate the transmittance of metal and metal nanoparticles. By combining with the "sandwich" blood-brain barrier model, the concentration gradient generation unit was integrated on the chip to realize permeability evaluation of metal-related components at different concentrations. bEnd.3 cells were employed as BBB model cells, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure metal ions and metal nanoparticles trans-membrane and barrier absorption in the model in vitro. The mixing effect of the fluid in the chip channel was theoretically simulated by Comsol simulation software. The actual mixing effect was evaluated with samples including cadmium and Rhodamine B solution, and the reliability of the concentration gradient generation unit of the actual sample was evaluated by atomic absorption spectroscopy. In the barrier permeability evaluation experiment, the BBB permeability of sodium fluorescein was (5.45±0.48)×10-6 cm/s, which was basically consistent with the previous research. The chip could generate stable concentration generation, realize in vitro simulation of BBB organs and evaluation of metal permeability, which was expected to be used in the future in the central nervous system drug screening and metal, nanoparticle neurotoxicity assessment and other fields.
  • 加载中
    1. [1]

      BOOTH R, KIM H. Lab Chip, 2012, 12(10):1784-1792.

    2. [2]

      PARDRIDGE W M, OLDENDORF W H, CANCILLA P, FRANK H J L. Ann. Intern. Med., 1986, 105(1):82-95.

    3. [3]

      FERRI C P, PRINCE M, BRAYNE C, BRODATY H, FRATIGLIONI L, GANGULI M, HALL K, HASEGAWA K, HENDRIE H, HUANG Y, JORM A, MATHERS C, MENEZES P R, RIMMER E, SCAZUFCA M. Lancet, 2005, 366(9503):2112-2117.

    4. [4]

      PANGALOS M N, SCHECHTER L E, HURKO O. Drug Discov. Today, 2007, 6(10):521-532.

    5. [5]

      YU L Y, LI R L, WU H L, ZHANG S F, CHAI M W, SHEN X X, HONG M, LIN H. Chin. J. Anal. Chem., 2020, 48(8):e20098-e20106.

    6. [6]

      BOONSTRA E, DE KLEIJN R, COLZATO L S, ALKEMADE A, FORSTMANN B U, NIEUWENHUIS S. Front. Psychol., 2015, 6(10):1520-1525.

    7. [7]

      ZHENG W, ASCHNER M, GHERSI-EGEA J F. Toxicol. Appl. Pharmacol., 2003, 192(1):1-11.

    8. [8]

      GRIEP L M, WOLBERS F, DE WAGENAAR B, TER BRAAK P M, WEKSLER B B, ROMERO I A, COURAUD P O, VERMES I, MEER A D, BERG A. BIOMED. Microdevices, 2013, 15(1):145-150.

    9. [9]

      WALTER F R, VALKAI S, KINCSES A, PETNEHÁZI A, CZELLER T, VESZELKA S, ORMOS P, DELI M A, DER A. Sens. Actuators, B, 2016, 222(1):1209-1219.

    10. [10]

      SHIN Y, HAN S, JEON J S, YAMAMOTO K, CHUNG S. Nat. Protoc., 2012, 7(7):1247-1259.

    11. [11]

      SUNG K E, GUI S, PEHLKE C, TRIER S M, ELICEIRI K W, KEELY P J, FRIEDL A, BEEBE D J. Biomaterials, 2009, 30(27):4833-4841.

    12. [12]

      BROWN J A, PENSABENE V, MARKOV D A, ALLWARDT V, NEELY M D, SHI M, BRITT C M, HOILETT O S, YANG Q, BREWER B M. Biomicrofluidics, 2015, 9(5):054124.

    13. [13]

      GRIEP L M, WOLBERS F, DE WAGENAAR B, TER BRAAK P M, WEKSLER B B, ROMERO I A, COURAUD P O, VERMES I, VAN DER MEER A D, VAN DER BERG A. Biomed. Microdevices, 2013, 15(1):145-150.

    14. [14]

      ODDO A, PENG B, TONG Z, WEI Y, TONG W Y, THISSEN H, VOELCKER N H. Trends Biotechnol., 2019; 37(12):1295-1314.

    15. [15]

      WEVERS N R, VAN VUGHT R, WILSCHUT K J, NICOLAS A, CHIANG C, LANZ H L, TRIETSCH S J, JOORE J, VULTO P. Sci. Rep., 2016, 6(12):38856.

    16. [16]

      ADRIANI G, MA D, PAVESI A, KAMM R D, GOH E L K. Lab Chip, 2017, 17(3):448-459.

    17. [17]

      PRABHAKARPANDIAN B, SHEN M C, NICHOLS J B, MILLS I R, SIDORYK-WEGRZYNOWICZ M, ASCHNER M, PANT K. Lab Chip, 2013, 13(6):1093-1101.

    18. [18]

      MAX I B, PETER C S. Integr. Biol., 2016, 8(9):976-984.

    19. [19]

      WOLFF A, ANTFOLK M, BRODIN B, TENJE M. J. Pharm. Sci., 2015, 104(9):2727-2746.

    20. [20]

      HUANG Q S, MAO S F, KHAN M Z, LIN J M. Chem. Commun., 2018, 54(21):2595-2598.

    21. [21]

      ZHANG X, WEI X, MEN X, JIANG Z, YE W Q, CHEN M L, YANG T, XU Z R, WANG J H. Anal. Chem., 2020, 92(9):6604-6612.

    22. [22]

      MAO S F, ZHANG W L, HUANG Q S, KHAN M, LI H F, KATSUMI U, LIN J M. Angew. Chem., Int. Ed,, 2017, 57(1):236-240.

    23. [23]

      TOMITA S, SAKAO M, KURITA R, NIWA O, YOSHIMOTO K. Chem. Sci., 2015, 6(10):5831-5836.

    24. [24]

      WEI X, ZHANG X, GUO R, CHEN M L, YANG T, XU Z R, WANG J H. Anal. Chem., 2019, 91(24):15826-15832.

    25. [25]

      SHEN S F, ZHANG X, ZHANG F J, WANG D F, LONG D D, NIU Y B. Talanta, 2020, 208(2):120477.

    26. [26]

      FENG D S, XU T R, LI H, SHI X Z, XU G W. J. Anal. Test., 2020, 4:198-209.

    27. [27]

      SHAO X J, GAO D, CHEN Y L, JIN F, HU G N, JIANG Y Y, LIU H X. Anal. Chim. Acta, 2016, 934(8):186-193.

    28. [28]

      WANG J D, KHAFAGY E, KHANAFER K, TAKAYAMA S, ELSAYED M E H. Mol. Pharm., 2016, 13(3):895-906.

    29. [29]

      TOBWALA S, WANG H J, CAREY J, BANKS W, ERCAL N. Toxics, 2014, 2(2):258-275.

    30. [30]

      ZHOU Y, PENG Z, SEVEN E S, LEBLANC R M. J. Controlled Release, 2018, 270(1):290-303.

  • 加载中
    1. [1]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    18. [18]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    19. [19]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    20. [20]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

Metrics
  • PDF Downloads(16)
  • Abstract views(1021)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return