Citation: LIU Yu-Ke,  WU Long-Ji,  KONG Xia,  HUANG Guo-Liang,  DING Jie. A Nano-ratio Fluorescence Probe for Imaging of Hypoxia in Living Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1237-1244. doi: 10.19756/j.issn.0253-3820.201802 shu

A Nano-ratio Fluorescence Probe for Imaging of Hypoxia in Living Cells

  • Corresponding author: DING Jie, wenqiong_1979@163.com
  • Received Date: 31 December 2020
    Revised Date: 18 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.81772982), the Educational Department of Guangdong Province, China (No.2019KTSCX049) and the Natural Science Foundation of Guangdong Province, China (No. 2021A1515012320).

  • Hypoxia is an important feature of solid tumors microenvironment, which is closely related to tumor highly aggressive, metastatic characteristics and poor prognosis. Therefore, it is of great significance to establish an efficient, rapid, sensitive and non-invasive method for detection of cell endogenous hypoxia and exogenous hypoxia. In this study, a ratio fluorescence probe was designed to detect endogenous and exogenous hypoxia levels, and the ratio fluorescence imaging was used to detect intracellular hypoxia. The oxygen sensitive fluorescent dye tris(4,7-biphenyl-1,10)-phenanthroline) ruthenium dichloride ([(Ru(dpp)3)]Cl2) was loaded on mesoporous yolk-shell organosilicon nanoparticle (MYSN) doped with fluorescein isothiocyanate (FITC). The linear response range of the probe was 5-290 μmol/L, the response time was 1 min, and the detection limit was as low as 4.68 μmol/L. Cell experiments showed that the as-prepared probe could be significantly taken up, exhibiting high specificity and high stability in fluorescence imaging of endogenous and exogenous hypoxia.
  • 加载中
    1. [1]

      SIEMANN D W, HORSMAN M R. Pharmacol. Ther., 2015, 153: 107-124.

    2. [2]

      TANG W, ZHAO G. Bioorg. Med. Chem., 2020, 28(2): 115235.

    3. [3]

      ZHAO C, ZENG C, YE S, DAI X, HE Q, YANG B, ZHU H. Acta Pharm. Sin. B, 2020, 10(6): 947-960.

    4. [4]

      TAMADDONI A, MOHAMMADI E, SEDAGHAT F, QUJEQ D, AS’HABI A. Pharmacol. Res., 2020, 156: 104798.

    5. [5]

      FENG J, BYRNE N M, JAMAL W, COULTER J A. Cancers (Basel), 2019, 11(12): 1989.

    6. [6]

      CHENG M H Y, MO Y, ZHENG G. Adv. Healthc. Mater., 2021,10(2): 2001549.

    7. [7]

      BUSSINK J, KAANDERS J H, VAN DER KOGEL A J. Radiother. Oncol., 2003,67(1): 3-15.

    8. [8]

      AEBERSOLD D M, BEER K T, LAISSUE J, HUG S. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48(1): 17-25.

    9. [9]

      CHO H, ACKERSTAFF E, CARLIN S, LUPU M E, WANG Y, RIZWAN A, O’DONOGHUE J, LING C C, HUMM J L, ZANZONICO P B, KOUTCHER J A. Neoplasia, 2009, 11(3): 247-259.

    10. [10]

      FAN A P, AN H, MORADI F, ROSENBERG J, ISHII Y, NARIAI T, OKAZAWA H, ZAHARCHUK G. Neuroimage, 2020, 220: 117136.

    11. [11]

    12. [12]

      LI Y, SUN Y, LI J, SU Q, YUAN W, DAI Y, HAN C, WANG Q, FENG W, LI F. J. Am. Chem. Soc., 2015, 137(19): 6407-6416.

    13. [13]

      CUI L, ZHONG Y, ZHU W, XU Y, DU Q, WANG X, QIAN X, XIAO Y. Org. Lett., 2011, 13(5): 928-931.

    14. [14]

      ZHANG K Y, GAO P, SUN G, ZHANG T, LI X, LIU S, ZHAO Q, LO K K, HUANG W. J. Am. Chem. Soc., 2018, 140(25): 7827-7834.

    15. [15]

      HUANG X, SONG J, YUNG B C, HUANG X, XIONG Y, CHEN X. Chem. Soc. Rev., 2018, 47(8): 2873-2920.

    16. [16]

    17. [17]

      XUE F F, CHEN J F, CHEN H R. Life Sci., 2020, 63(12): 1786-1797.

    18. [18]

      WU M, MENG Q, CHEN Y, ZHANG L, LI M, CAI X, LI Y, YU P, ZHANG L, SHI J. Adv. Mater., 2016, 28(10): 1963-1969.

    19. [19]

      LI L, YANG Z, FAN W, HE L, CUI C, ZOU J, TANG W, JACOBSON O, WANG Z, NIU G, HU S, CHEN X. Adv. Funct. Mater., 2020, 30(4): 1907716.

    20. [20]

      YANG Z, WEN J, WANG Q, LI Y, ZHAO Y, TIAN Y, WANG X, CAO X, ZHANG Y, LU G, TENG Z, ZHANG L. ACS Appl. Mater. Interfaces, 2019, 11(1): 187-194.

    21. [21]

      CHEN Y, MENG Q, WU M, WANG S, XU P, CHEN H, LI Y, ZHANG L, WANG L, SHI J. J. Am. Chem. Soc., 2014, 136(46): 16326-16334.

    22. [22]

      SHAMIRIAN A, AFSARI H S, HASSAN A, MILLER L W, SNEE P. T. ACS Sens., 2016, 1(10): 1244-1250.

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    5. [5]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    8. [8]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    9. [9]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    10. [10]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(1017)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return