Citation: LIU Yu-Ke,  WU Long-Ji,  KONG Xia,  HUANG Guo-Liang,  DING Jie. A Nano-ratio Fluorescence Probe for Imaging of Hypoxia in Living Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1237-1244. doi: 10.19756/j.issn.0253-3820.201802 shu

A Nano-ratio Fluorescence Probe for Imaging of Hypoxia in Living Cells

  • Corresponding author: DING Jie, wenqiong_1979@163.com
  • Received Date: 31 December 2020
    Revised Date: 18 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.81772982), the Educational Department of Guangdong Province, China (No.2019KTSCX049) and the Natural Science Foundation of Guangdong Province, China (No. 2021A1515012320).

  • Hypoxia is an important feature of solid tumors microenvironment, which is closely related to tumor highly aggressive, metastatic characteristics and poor prognosis. Therefore, it is of great significance to establish an efficient, rapid, sensitive and non-invasive method for detection of cell endogenous hypoxia and exogenous hypoxia. In this study, a ratio fluorescence probe was designed to detect endogenous and exogenous hypoxia levels, and the ratio fluorescence imaging was used to detect intracellular hypoxia. The oxygen sensitive fluorescent dye tris(4,7-biphenyl-1,10)-phenanthroline) ruthenium dichloride ([(Ru(dpp)3)]Cl2) was loaded on mesoporous yolk-shell organosilicon nanoparticle (MYSN) doped with fluorescein isothiocyanate (FITC). The linear response range of the probe was 5-290 μmol/L, the response time was 1 min, and the detection limit was as low as 4.68 μmol/L. Cell experiments showed that the as-prepared probe could be significantly taken up, exhibiting high specificity and high stability in fluorescence imaging of endogenous and exogenous hypoxia.
  • 加载中
    1. [1]

      SIEMANN D W, HORSMAN M R. Pharmacol. Ther., 2015, 153: 107-124.

    2. [2]

      TANG W, ZHAO G. Bioorg. Med. Chem., 2020, 28(2): 115235.

    3. [3]

      ZHAO C, ZENG C, YE S, DAI X, HE Q, YANG B, ZHU H. Acta Pharm. Sin. B, 2020, 10(6): 947-960.

    4. [4]

      TAMADDONI A, MOHAMMADI E, SEDAGHAT F, QUJEQ D, AS’HABI A. Pharmacol. Res., 2020, 156: 104798.

    5. [5]

      FENG J, BYRNE N M, JAMAL W, COULTER J A. Cancers (Basel), 2019, 11(12): 1989.

    6. [6]

      CHENG M H Y, MO Y, ZHENG G. Adv. Healthc. Mater., 2021,10(2): 2001549.

    7. [7]

      BUSSINK J, KAANDERS J H, VAN DER KOGEL A J. Radiother. Oncol., 2003,67(1): 3-15.

    8. [8]

      AEBERSOLD D M, BEER K T, LAISSUE J, HUG S. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48(1): 17-25.

    9. [9]

      CHO H, ACKERSTAFF E, CARLIN S, LUPU M E, WANG Y, RIZWAN A, O’DONOGHUE J, LING C C, HUMM J L, ZANZONICO P B, KOUTCHER J A. Neoplasia, 2009, 11(3): 247-259.

    10. [10]

      FAN A P, AN H, MORADI F, ROSENBERG J, ISHII Y, NARIAI T, OKAZAWA H, ZAHARCHUK G. Neuroimage, 2020, 220: 117136.

    11. [11]

    12. [12]

      LI Y, SUN Y, LI J, SU Q, YUAN W, DAI Y, HAN C, WANG Q, FENG W, LI F. J. Am. Chem. Soc., 2015, 137(19): 6407-6416.

    13. [13]

      CUI L, ZHONG Y, ZHU W, XU Y, DU Q, WANG X, QIAN X, XIAO Y. Org. Lett., 2011, 13(5): 928-931.

    14. [14]

      ZHANG K Y, GAO P, SUN G, ZHANG T, LI X, LIU S, ZHAO Q, LO K K, HUANG W. J. Am. Chem. Soc., 2018, 140(25): 7827-7834.

    15. [15]

      HUANG X, SONG J, YUNG B C, HUANG X, XIONG Y, CHEN X. Chem. Soc. Rev., 2018, 47(8): 2873-2920.

    16. [16]

    17. [17]

      XUE F F, CHEN J F, CHEN H R. Life Sci., 2020, 63(12): 1786-1797.

    18. [18]

      WU M, MENG Q, CHEN Y, ZHANG L, LI M, CAI X, LI Y, YU P, ZHANG L, SHI J. Adv. Mater., 2016, 28(10): 1963-1969.

    19. [19]

      LI L, YANG Z, FAN W, HE L, CUI C, ZOU J, TANG W, JACOBSON O, WANG Z, NIU G, HU S, CHEN X. Adv. Funct. Mater., 2020, 30(4): 1907716.

    20. [20]

      YANG Z, WEN J, WANG Q, LI Y, ZHAO Y, TIAN Y, WANG X, CAO X, ZHANG Y, LU G, TENG Z, ZHANG L. ACS Appl. Mater. Interfaces, 2019, 11(1): 187-194.

    21. [21]

      CHEN Y, MENG Q, WU M, WANG S, XU P, CHEN H, LI Y, ZHANG L, WANG L, SHI J. J. Am. Chem. Soc., 2014, 136(46): 16326-16334.

    22. [22]

      SHAMIRIAN A, AFSARI H S, HASSAN A, MILLER L W, SNEE P. T. ACS Sens., 2016, 1(10): 1244-1250.

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    18. [18]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(0)
  • Abstract views(773)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return