Citation: HUANG Zi-Heng,  ZOU Jian-Mei,  LI Xiao-Qing,  HE Qing,  NIE Jin-Fang. Research Progress of Fluorescent Probe for G-quadruplex[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1258-1269. doi: 10.19756/j.issn.0253-3820.201797 shu

Research Progress of Fluorescent Probe for G-quadruplex

  • Corresponding author: ZOU Jian-Mei,  NIE Jin-Fang, 
  • Received Date: 28 December 2020
    Revised Date: 14 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21765007), the Guangxi Key Research Project (No.GuikeAB17129003), and the Natural Science Foundation of Guangxi, China (No.2020GXNSFBA297114).

  • G-quadruplex is a kind of secondary structure of nucleic acids that is formed by the stacking of guanine-rich oligonucleotides. It has been reported that G-quadruplexes widely locate in the human genome (Telomere, gene promoter and so on) and play important roles in regulation of gene transcription and expression, stabilization of gene and synthesis of telomere. This indicates that the structure, quantity and distribution of G-quadruplex in organism are related to the occurrence and development of various diseases to some extent. Therefore, the real-time monitoring of G-quadruplex in organism has great significance for the diagnosis and treatment of diseases. Fluorescence spectrometry technique shows many advantages such as high sensitivity and convenience in practice, and has become one of the main tools for detection and identification of G-quadruplex. Herein, the recent development of G-quadruplex fluorescent probes (including porphyrins, thiazole orange, Thioflavin T, etc.) and the research progress of biosensors and fluorescence cell imaging based on the specific recognition reaction between G-quadruplex and probes are reviewed.
  • 加载中
    1. [1]

      WATSON J D, CRICK F H. Nature, 1953, 171(4356): 737-738.

    2. [2]

      SWADLING J B, ISHII K, TAHARA T, KITAO A. Phys. Chem. Chem. Phys., 2018, 20(5): 2990-3001.

    3. [3]

      DAYN A, MALKHOSYAN S, MIRKIN S M. Nucleic Acids Res., 1992, 20(22): 5991-5997.

    4. [4]

      LIMONGELLI V, TITO S D, CEROFOLINI L, FRAGAI M, PAGANO B, TROTTA R, COSCONATI S, MARINELLI L, NOVELLINO E, BERTINI I. Angew. Chem., Int. Ed., 2013, 52(8): 2269-2273.

    5. [5]

      GELLERT M, LIPSETT M N, DAVIES D R. Proc. Natl. Acad. Sci. U. S. A., 1962, 48(12): 2013-2018.

    6. [6]

      KETTANI A, BOUAZIZ S, GORIN A, ZHAO H, JONES R A, PATEL D J. J. Mol. Biol., 1998, 282(3): 619-636.

    7. [7]

      RHODES D, LIPPS H J. Nucleic Acids Res., 2015, 43(18): 8627-8637.

    8. [8]

      VERDUN R E, KARLSEDER J. Nature, 2007, 447(7147): 924-931.

    9. [9]

      AWADASSEID A, MA X D, WU Y L, ZHANG W. Biomed. Pharmacother., 2021, 139: 111550.

    10. [10]

      CHILKA P, DESAI N, DATTA B. Molecules, 2019, 24(4): 752-767.

    11. [11]

      WINNERDY F R, BAKALAR B, MAITY A, VANDANA J J, MECHULAM Y, SCHMITT E, PHAN A T. Nucleic Acids Res., 2019, 47(15): 8272-8281.

    12. [12]

      ADRIAN M, HEDDI B, PHAN A T. Methods, 2012, 57(1): 11-24.

    13. [13]

      TOTHOVA P, KRAFCIKOVA P, VIGLASKY V. Biochemistry, 2014, 53(45): 7013-7027.

    14. [14]

      OLSEN C M, MARKY L A. Methods Mol. Biol., 2010, 608: 147-158.

    15. [15]

      YIN S, LOO J A. Int. J. Mass spectrom., 2011, 300(2-3): 118-122.

    16. [16]

      ZHENG K W, CHEN Z, HAO Y H, TAN Z. Nucleic Acids Res., 2010, 38(1): 327-338.

    17. [17]

      JIN B, ZHANG X, ZHENG W, LIU X J, QI C, WANG F Y, SHANGGUAN D H. Anal. Chem., 2014, 86(1): 943-952.

    18. [18]

      HE H Z, CHAND S H, LEUNG C H, MA D L. Nucleic Acids Res., 2013, 41(8): 4345-4359.

    19. [19]

      UMAR M I, JI D Y, CHAN C Y, KWOK C K. Molecules, 2019, 24(13): 2416.

    20. [20]

      BURGE S, PARKINSON G N, HAZEL P, TODD A K, NEIDLE S. Nucleic Acids Res., 2006, 34(19): 5402-5415.

    21. [21]

      ZIMMERMAN S B, COHEN G H, DAVIES D R. J. Mol. Biol., 1975, 92(2): 181-192.

    22. [22]

      DAVIS J T. Angew. Chem., 2010, 43(6): 668-698.

    23. [23]

      SIMONSSON T. Biol. Chem., 2001, 382(4): 621-628.

    24. [24]

      KINGSBURY C J, SENGE M O. Coord. Chem. Rev., 2021, 431: 213760.

    25. [25]

      DUFOUR E, MARDEN M C, TOMASZ H. FEBS Lett., 1990, 277(1-2): 223-226.

    26. [26]

      LI Y F, GEYER C R, DIPANKAR S. Biochemistry, 1996, 35(21): 6911-6922.

    27. [27]

      LI T, WANG E K, DONG S J. Anal. Chem., 2010, 82(18): 7576-7580.

    28. [28]

      HUO Y F, ZHU L N, LIX Y, HAN G M, KONG D M. Sens. Actuators, B, 2016, 237: 179-189.

    29. [29]

      ZHU L N, ZHAO S J, WU B, LI X Z, KONG D M. PloS One, 2012, 7(5): e35586.

    30. [30]

      ZHANG R, CHENG M, ZHANG L M, ZHU L N, KONG D M. ACS Appl. Mater. Interfaces, 2018, 10(16): 13350-13360.

    31. [31]

      MATHEW D, SUJATHA S. J. Inorg. Biochem., 2021, 219: 111434.

    32. [32]

      KEANE P M, KELLY J M. Coord. Chem. Rev., 2018, 364: 137-154.

    33. [33]

      RYAZANOVA O, ZOZULYA V, VOLOSHIN I, DUBEY L, DUBEY I, KARACHEVTSEV V. J. Fluoresc., 2015, 25(6): 1897-1904.

    34. [34]

      SABHARWAL N C, MENDOZA O, NICOLUDIS J M, RUAN T, MERGNY J L, YATSUNYK L A. JBIC, J. Biol. Inorg. Chem., 2016, 21(2): 227-239.

    35. [35]

      SABATER L, FANG P J, CHANG C F, DE RACHE A D, PRADO E, DEJEU J, GAROFALO A, LIN J H, MERGNY J L, DEFRANCQ E. Dalton Trans., 2015, 44(8): 3701-3707.

    36. [36]

      MUSETTI C, SPAGNUL C, MION G, ROS S D, GIANFERRARA T, SISSI C. ChemPlusChem, 2015, 80(1): 158-168.

    37. [37]

      NYGREN J, SVANVIK N, KUBISTA M. Biopolymers, 1998, 46(1): 39-51.

    38. [38]

      MOHANTY J, BAROOAH N, DHAMODHARAN V, HARIKRISHNA S, PRADEEPKUMAR P I, BHASIKUTTAN A C. J. Am. Chem. Soc., 2013, 135(1): 367-376.

    39. [39]

      BHOWMIK S, TAKAHASHI S, SUGIMOTO N. ACS Omega, 2019, 4(2): 4325-4329.

    40. [40]

      WANG Y Q, HU M H, GUO R J, CHEN S B, HUANG Z S, TAN J H. Sens. Actuators, B, 2018, 266: 187-194.

    41. [41]

      YANG P, CIAN A D,TEULADE-FICHOU M P, MERGNY J L, MONCHAUD D. Angew. Chem., Int. Ed., 2009, 48(12): 2188-2191.

    42. [42]

      OHEIM M, MICHAEL D J, GEISBAUER M, MADSEN D, CHOW R H. Adv.Drug Delivery Rev., 2006, 58(7): 788-808.

    43. [43]

      ZHANG F, LI G, LV F L, JIANG G B, WANG H X, WANG M Q, LI S. Tetrahedron Lett., 2018, 59(34): 3272-3278.

    44. [44]

      LI Y, XU S, WU X, XU Q, ZHAO Y H, LOU X H, YANG X B. Anal. Bioanal. Chem., 2016, 408(28): 8025-8036.

    45. [45]

      KATAOKA Y, FUJITA H, KASAHARA Y, YOSHIHARA T, TOBITA S, KUWAHARA M. Anal. Chem., 2014, 86(24): 12078-12084.

    46. [46]

      GUAN A J, ZHANG X F, SUN X, LI Q, XIANG J F, WANG L X, LAN L, YANG F M, XU S J, GUO X M, TANG Y L. Sci. Rep., 2018, 8: 2666.

    47. [47]

      YIN J L, MA Y Y, LI G H, PENG M, LIN W Y. Coord. Chem. Rev., 2020, 412: 213257.

    48. [48]

      CHANG C C, WU J Y, CHANG T C. J. Chin. Chem. Soc., 2003, 50(2): 185-188.

    49. [49]

      DENG Q R, WANG N, SU J K, LIU A J, ZHANG J, LONG L P, QI F P, TANG R R, LIU C H. Anal. Methods, 2019, 11(20): 2630-2633.

    50. [50]

      DAI H, HUANG M L, QIAN J Q, LIU J, MENG C, LI Y Y, MING G X, ZHANG T, WANG S L, SHI Y J. Eur. J. Med. Chem., 2019, 166: 470-479.

    51. [51]

      AMIN K M, RAHMAN D E A, ALLAM H A, EL-ZOHEIRY H H. Bioorg. Chem., 2021, 110: 104792.

    52. [52]

      JUNG H S, KWON P S, LEE J W, KIM J I, HONG C S, KIM J W, YAN S, LEE J Y, LEE J H, JOO T, KIM J S. J. Am. Chem. Soc., 2009, 131(5): 2008-2012.

    53. [53]

      KWON H, LEE K, KIM H J. Chem. Commun., 2011, 47(6): 1773-1775.

    54. [54]

      WANG K N, MA L, LIU G Q, CAO D X, GUAN R F, LIU Z Q. Dyes Pigm., 2016, 126: 104-109.

    55. [55]

      XIE X, REZNICHENKO O, CHAPUT L, MARTIN P, TEULADE-FICHOU M P, GRANZHAN A. Chemistry, 2018, 24(48): 12638-12651.

    56. [56]

      DEORE P S, COMAN D S, MANDERVILLE R A. Chem. Commun., 2019, 55(24): 3540-3543.

    57. [57]

      NARAYANASWAMY N, KUMAR M, DAS S, SHARMA R, SAMANTA P K, PATI S K, DHAR S K, KUNDU T K, GOVINDARAJU T. Sci. Rep., 2014, 4: 6476.

    58. [58]

      JIANG N, FAN J L, XU F, PENG X J, MU H Y, WANG J Y, XIONG X Q. Angew. Chem., Int. Ed., 2015, 54(8): 2510-2514.

    59. [59]

      PAJONK F, SCHOLBER J, FIEBICH B. Cancer Chemoth. Pharm., 2005, 55(5): 439-446.

    60. [60]

      ZHANG X, JIN B, ZHENG W, ZHANG N, LIU X J, BING T, WEI Y B, WANG F Y, SHANGGUAN D H. Dyes Pigm., 2016, 132: 405-411.

    61. [61]

      DEORE P S, MANDERVILLE R A. New J. Chem., 2019, 43(13): 4994-4997.

    62. [62]

      GRANDE V, SHEN C A, DEIANA M, DUDEK M, OLESIAK-BANSKA J, MATCZYSZYN K, WURTHNER F. Chem. Sci., 2018, 9(44): 8375-8381.

    63. [63]

      LIU L L, SHAO Y, PENG J, HUANG C B, LIU H, ZHANG L H. Anal. Chem., 2014, 86(3): 1622-1631.

    64. [64]

      KONG D M, GUO J H, YANG W, MA Y E, SHEN H X. Biosens. Bioelectron., 2009, 25(1): 88-93.

    65. [65]

      NAGATOISHI S, NOJIMA T, JUSKOWIAK B, TAKENAKA S. Angew. Chem., Int. Ed., 2005, 44(32): 5067-5070.

    66. [66]

      HE H Z, WANG M D, CHAND S H, LEUNG C H, LIN X X, LIN J M, MA D L. Methods, 2013, 64(3): 212-217.

    67. [67]

      ZHOU X, KHUSBU F Y, CHEN H C, MA C B. Talanta, 2020, 208: 120453.

    68. [68]

      ZHAO H Z, LIU Q, LIU M, JIN Y, LI B X. Talanta, 2017, 165: 653-658.

    69. [69]

      SUN X, LI Q, XIANG J F, WANG L X, ZHANG X F, LAN L, XU S J, YANG F M, TANG Y L. Analyst, 2017, 142(18): 3352-3355.

    70. [70]

      GUO L Q, NIE D D, QIU C Y, ZHENG Q S, WU H Y, YE P R, HAO Y L, FU F F, CHEN G N. Biosens.Bioelectron., 2012, 35(1): 123-127.

    71. [71]

      ZHU Q, LIU L H, XING Y P, ZHOU X H. J. Hazard. Mater., 2018, 355: 50-55.

    72. [72]

      XU L J, CHEN Y, ZHANG R H, GAO T, ZHANG Y J, SHEN X Q, PEI R J. J. Fluoresc., 2017, 27(2): 569-574.

    73. [73]

      ZHOU Z X, ZHU J B, ZHANG L B, DU Y, DONG S J, WANG E K. Anal. Chem., 2013, 85(4): 2431-2435.

    74. [74]

      YANG C L, HU R, LI Q, LI S, XIANG J F, GUO X D, WANG S Q, ZENG Y, LI Y, YANG G Q. ACS Omega, 2018, 3(9): 10487-10492.

    75. [75]

      ZHANG S G, SUN H X, WANG L X, LIU Y, CHEN H B, LI Q, GUAN A J, LIU M R, TANG Y L. Nucleic Acids Res., 2018, 46(15): 7522-7532.

    76. [76]

      ANJONG T F, KIM G, JANG H Y, YOON J, KIM J. New J. Chem., 2017, 41(10): 4241-4241.

    77. [77]

      LU Y J, HU D P, ZHANG K, WONG W L, CHOW C F. Biosens. Bioelectron., 2016, 81: 373-381.

    78. [78]

      MURRAY J M, CARR A M. Curr. Opin. Cell Biol., 2018, 52: 120-125.

    79. [79]

      DEZ C, TOLLERVEY D. Curr. Opin. Cell Biol., 2004, 7(6): 631-637.

    80. [80]

      SHIVALINGAM A, IZQUIERDO M A, LE MAROIS A, VYSNIAUSKAS A, SUHLING K, KUIMOVA M K, VILAR R. Nat. Commun., 2015, 6: 8718.

    81. [81]

      LI L L, XU H R, LI K, YANG Q, PAN S L, YU X Q. Sens. Actuators, B, 2019, 286: 575-582.

    82. [82]

      CHEN H B, SUN H X, ZHANG S G, YAN W P, LI Q, GUAN A J, XIANG J F, LIU M R, TANG Y L. Chem. Commun., 2019, 55(35): 5060-5063.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(25)
  • Abstract views(1404)
  • HTML views(343)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return