Citation: HUANG Zi-Heng,  ZOU Jian-Mei,  LI Xiao-Qing,  HE Qing,  NIE Jin-Fang. Research Progress of Fluorescent Probe for G-quadruplex[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1258-1269. doi: 10.19756/j.issn.0253-3820.201797 shu

Research Progress of Fluorescent Probe for G-quadruplex

  • Corresponding author: ZOU Jian-Mei,  NIE Jin-Fang, 
  • Received Date: 28 December 2020
    Revised Date: 14 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21765007), the Guangxi Key Research Project (No.GuikeAB17129003), and the Natural Science Foundation of Guangxi, China (No.2020GXNSFBA297114).

  • G-quadruplex is a kind of secondary structure of nucleic acids that is formed by the stacking of guanine-rich oligonucleotides. It has been reported that G-quadruplexes widely locate in the human genome (Telomere, gene promoter and so on) and play important roles in regulation of gene transcription and expression, stabilization of gene and synthesis of telomere. This indicates that the structure, quantity and distribution of G-quadruplex in organism are related to the occurrence and development of various diseases to some extent. Therefore, the real-time monitoring of G-quadruplex in organism has great significance for the diagnosis and treatment of diseases. Fluorescence spectrometry technique shows many advantages such as high sensitivity and convenience in practice, and has become one of the main tools for detection and identification of G-quadruplex. Herein, the recent development of G-quadruplex fluorescent probes (including porphyrins, thiazole orange, Thioflavin T, etc.) and the research progress of biosensors and fluorescence cell imaging based on the specific recognition reaction between G-quadruplex and probes are reviewed.
  • 加载中
    1. [1]

      WATSON J D, CRICK F H. Nature, 1953, 171(4356): 737-738.

    2. [2]

      SWADLING J B, ISHII K, TAHARA T, KITAO A. Phys. Chem. Chem. Phys., 2018, 20(5): 2990-3001.

    3. [3]

      DAYN A, MALKHOSYAN S, MIRKIN S M. Nucleic Acids Res., 1992, 20(22): 5991-5997.

    4. [4]

      LIMONGELLI V, TITO S D, CEROFOLINI L, FRAGAI M, PAGANO B, TROTTA R, COSCONATI S, MARINELLI L, NOVELLINO E, BERTINI I. Angew. Chem., Int. Ed., 2013, 52(8): 2269-2273.

    5. [5]

      GELLERT M, LIPSETT M N, DAVIES D R. Proc. Natl. Acad. Sci. U. S. A., 1962, 48(12): 2013-2018.

    6. [6]

      KETTANI A, BOUAZIZ S, GORIN A, ZHAO H, JONES R A, PATEL D J. J. Mol. Biol., 1998, 282(3): 619-636.

    7. [7]

      RHODES D, LIPPS H J. Nucleic Acids Res., 2015, 43(18): 8627-8637.

    8. [8]

      VERDUN R E, KARLSEDER J. Nature, 2007, 447(7147): 924-931.

    9. [9]

      AWADASSEID A, MA X D, WU Y L, ZHANG W. Biomed. Pharmacother., 2021, 139: 111550.

    10. [10]

      CHILKA P, DESAI N, DATTA B. Molecules, 2019, 24(4): 752-767.

    11. [11]

      WINNERDY F R, BAKALAR B, MAITY A, VANDANA J J, MECHULAM Y, SCHMITT E, PHAN A T. Nucleic Acids Res., 2019, 47(15): 8272-8281.

    12. [12]

      ADRIAN M, HEDDI B, PHAN A T. Methods, 2012, 57(1): 11-24.

    13. [13]

      TOTHOVA P, KRAFCIKOVA P, VIGLASKY V. Biochemistry, 2014, 53(45): 7013-7027.

    14. [14]

      OLSEN C M, MARKY L A. Methods Mol. Biol., 2010, 608: 147-158.

    15. [15]

      YIN S, LOO J A. Int. J. Mass spectrom., 2011, 300(2-3): 118-122.

    16. [16]

      ZHENG K W, CHEN Z, HAO Y H, TAN Z. Nucleic Acids Res., 2010, 38(1): 327-338.

    17. [17]

      JIN B, ZHANG X, ZHENG W, LIU X J, QI C, WANG F Y, SHANGGUAN D H. Anal. Chem., 2014, 86(1): 943-952.

    18. [18]

      HE H Z, CHAND S H, LEUNG C H, MA D L. Nucleic Acids Res., 2013, 41(8): 4345-4359.

    19. [19]

      UMAR M I, JI D Y, CHAN C Y, KWOK C K. Molecules, 2019, 24(13): 2416.

    20. [20]

      BURGE S, PARKINSON G N, HAZEL P, TODD A K, NEIDLE S. Nucleic Acids Res., 2006, 34(19): 5402-5415.

    21. [21]

      ZIMMERMAN S B, COHEN G H, DAVIES D R. J. Mol. Biol., 1975, 92(2): 181-192.

    22. [22]

      DAVIS J T. Angew. Chem., 2010, 43(6): 668-698.

    23. [23]

      SIMONSSON T. Biol. Chem., 2001, 382(4): 621-628.

    24. [24]

      KINGSBURY C J, SENGE M O. Coord. Chem. Rev., 2021, 431: 213760.

    25. [25]

      DUFOUR E, MARDEN M C, TOMASZ H. FEBS Lett., 1990, 277(1-2): 223-226.

    26. [26]

      LI Y F, GEYER C R, DIPANKAR S. Biochemistry, 1996, 35(21): 6911-6922.

    27. [27]

      LI T, WANG E K, DONG S J. Anal. Chem., 2010, 82(18): 7576-7580.

    28. [28]

      HUO Y F, ZHU L N, LIX Y, HAN G M, KONG D M. Sens. Actuators, B, 2016, 237: 179-189.

    29. [29]

      ZHU L N, ZHAO S J, WU B, LI X Z, KONG D M. PloS One, 2012, 7(5): e35586.

    30. [30]

      ZHANG R, CHENG M, ZHANG L M, ZHU L N, KONG D M. ACS Appl. Mater. Interfaces, 2018, 10(16): 13350-13360.

    31. [31]

      MATHEW D, SUJATHA S. J. Inorg. Biochem., 2021, 219: 111434.

    32. [32]

      KEANE P M, KELLY J M. Coord. Chem. Rev., 2018, 364: 137-154.

    33. [33]

      RYAZANOVA O, ZOZULYA V, VOLOSHIN I, DUBEY L, DUBEY I, KARACHEVTSEV V. J. Fluoresc., 2015, 25(6): 1897-1904.

    34. [34]

      SABHARWAL N C, MENDOZA O, NICOLUDIS J M, RUAN T, MERGNY J L, YATSUNYK L A. JBIC, J. Biol. Inorg. Chem., 2016, 21(2): 227-239.

    35. [35]

      SABATER L, FANG P J, CHANG C F, DE RACHE A D, PRADO E, DEJEU J, GAROFALO A, LIN J H, MERGNY J L, DEFRANCQ E. Dalton Trans., 2015, 44(8): 3701-3707.

    36. [36]

      MUSETTI C, SPAGNUL C, MION G, ROS S D, GIANFERRARA T, SISSI C. ChemPlusChem, 2015, 80(1): 158-168.

    37. [37]

      NYGREN J, SVANVIK N, KUBISTA M. Biopolymers, 1998, 46(1): 39-51.

    38. [38]

      MOHANTY J, BAROOAH N, DHAMODHARAN V, HARIKRISHNA S, PRADEEPKUMAR P I, BHASIKUTTAN A C. J. Am. Chem. Soc., 2013, 135(1): 367-376.

    39. [39]

      BHOWMIK S, TAKAHASHI S, SUGIMOTO N. ACS Omega, 2019, 4(2): 4325-4329.

    40. [40]

      WANG Y Q, HU M H, GUO R J, CHEN S B, HUANG Z S, TAN J H. Sens. Actuators, B, 2018, 266: 187-194.

    41. [41]

      YANG P, CIAN A D,TEULADE-FICHOU M P, MERGNY J L, MONCHAUD D. Angew. Chem., Int. Ed., 2009, 48(12): 2188-2191.

    42. [42]

      OHEIM M, MICHAEL D J, GEISBAUER M, MADSEN D, CHOW R H. Adv.Drug Delivery Rev., 2006, 58(7): 788-808.

    43. [43]

      ZHANG F, LI G, LV F L, JIANG G B, WANG H X, WANG M Q, LI S. Tetrahedron Lett., 2018, 59(34): 3272-3278.

    44. [44]

      LI Y, XU S, WU X, XU Q, ZHAO Y H, LOU X H, YANG X B. Anal. Bioanal. Chem., 2016, 408(28): 8025-8036.

    45. [45]

      KATAOKA Y, FUJITA H, KASAHARA Y, YOSHIHARA T, TOBITA S, KUWAHARA M. Anal. Chem., 2014, 86(24): 12078-12084.

    46. [46]

      GUAN A J, ZHANG X F, SUN X, LI Q, XIANG J F, WANG L X, LAN L, YANG F M, XU S J, GUO X M, TANG Y L. Sci. Rep., 2018, 8: 2666.

    47. [47]

      YIN J L, MA Y Y, LI G H, PENG M, LIN W Y. Coord. Chem. Rev., 2020, 412: 213257.

    48. [48]

      CHANG C C, WU J Y, CHANG T C. J. Chin. Chem. Soc., 2003, 50(2): 185-188.

    49. [49]

      DENG Q R, WANG N, SU J K, LIU A J, ZHANG J, LONG L P, QI F P, TANG R R, LIU C H. Anal. Methods, 2019, 11(20): 2630-2633.

    50. [50]

      DAI H, HUANG M L, QIAN J Q, LIU J, MENG C, LI Y Y, MING G X, ZHANG T, WANG S L, SHI Y J. Eur. J. Med. Chem., 2019, 166: 470-479.

    51. [51]

      AMIN K M, RAHMAN D E A, ALLAM H A, EL-ZOHEIRY H H. Bioorg. Chem., 2021, 110: 104792.

    52. [52]

      JUNG H S, KWON P S, LEE J W, KIM J I, HONG C S, KIM J W, YAN S, LEE J Y, LEE J H, JOO T, KIM J S. J. Am. Chem. Soc., 2009, 131(5): 2008-2012.

    53. [53]

      KWON H, LEE K, KIM H J. Chem. Commun., 2011, 47(6): 1773-1775.

    54. [54]

      WANG K N, MA L, LIU G Q, CAO D X, GUAN R F, LIU Z Q. Dyes Pigm., 2016, 126: 104-109.

    55. [55]

      XIE X, REZNICHENKO O, CHAPUT L, MARTIN P, TEULADE-FICHOU M P, GRANZHAN A. Chemistry, 2018, 24(48): 12638-12651.

    56. [56]

      DEORE P S, COMAN D S, MANDERVILLE R A. Chem. Commun., 2019, 55(24): 3540-3543.

    57. [57]

      NARAYANASWAMY N, KUMAR M, DAS S, SHARMA R, SAMANTA P K, PATI S K, DHAR S K, KUNDU T K, GOVINDARAJU T. Sci. Rep., 2014, 4: 6476.

    58. [58]

      JIANG N, FAN J L, XU F, PENG X J, MU H Y, WANG J Y, XIONG X Q. Angew. Chem., Int. Ed., 2015, 54(8): 2510-2514.

    59. [59]

      PAJONK F, SCHOLBER J, FIEBICH B. Cancer Chemoth. Pharm., 2005, 55(5): 439-446.

    60. [60]

      ZHANG X, JIN B, ZHENG W, ZHANG N, LIU X J, BING T, WEI Y B, WANG F Y, SHANGGUAN D H. Dyes Pigm., 2016, 132: 405-411.

    61. [61]

      DEORE P S, MANDERVILLE R A. New J. Chem., 2019, 43(13): 4994-4997.

    62. [62]

      GRANDE V, SHEN C A, DEIANA M, DUDEK M, OLESIAK-BANSKA J, MATCZYSZYN K, WURTHNER F. Chem. Sci., 2018, 9(44): 8375-8381.

    63. [63]

      LIU L L, SHAO Y, PENG J, HUANG C B, LIU H, ZHANG L H. Anal. Chem., 2014, 86(3): 1622-1631.

    64. [64]

      KONG D M, GUO J H, YANG W, MA Y E, SHEN H X. Biosens. Bioelectron., 2009, 25(1): 88-93.

    65. [65]

      NAGATOISHI S, NOJIMA T, JUSKOWIAK B, TAKENAKA S. Angew. Chem., Int. Ed., 2005, 44(32): 5067-5070.

    66. [66]

      HE H Z, WANG M D, CHAND S H, LEUNG C H, LIN X X, LIN J M, MA D L. Methods, 2013, 64(3): 212-217.

    67. [67]

      ZHOU X, KHUSBU F Y, CHEN H C, MA C B. Talanta, 2020, 208: 120453.

    68. [68]

      ZHAO H Z, LIU Q, LIU M, JIN Y, LI B X. Talanta, 2017, 165: 653-658.

    69. [69]

      SUN X, LI Q, XIANG J F, WANG L X, ZHANG X F, LAN L, XU S J, YANG F M, TANG Y L. Analyst, 2017, 142(18): 3352-3355.

    70. [70]

      GUO L Q, NIE D D, QIU C Y, ZHENG Q S, WU H Y, YE P R, HAO Y L, FU F F, CHEN G N. Biosens.Bioelectron., 2012, 35(1): 123-127.

    71. [71]

      ZHU Q, LIU L H, XING Y P, ZHOU X H. J. Hazard. Mater., 2018, 355: 50-55.

    72. [72]

      XU L J, CHEN Y, ZHANG R H, GAO T, ZHANG Y J, SHEN X Q, PEI R J. J. Fluoresc., 2017, 27(2): 569-574.

    73. [73]

      ZHOU Z X, ZHU J B, ZHANG L B, DU Y, DONG S J, WANG E K. Anal. Chem., 2013, 85(4): 2431-2435.

    74. [74]

      YANG C L, HU R, LI Q, LI S, XIANG J F, GUO X D, WANG S Q, ZENG Y, LI Y, YANG G Q. ACS Omega, 2018, 3(9): 10487-10492.

    75. [75]

      ZHANG S G, SUN H X, WANG L X, LIU Y, CHEN H B, LI Q, GUAN A J, LIU M R, TANG Y L. Nucleic Acids Res., 2018, 46(15): 7522-7532.

    76. [76]

      ANJONG T F, KIM G, JANG H Y, YOON J, KIM J. New J. Chem., 2017, 41(10): 4241-4241.

    77. [77]

      LU Y J, HU D P, ZHANG K, WONG W L, CHOW C F. Biosens. Bioelectron., 2016, 81: 373-381.

    78. [78]

      MURRAY J M, CARR A M. Curr. Opin. Cell Biol., 2018, 52: 120-125.

    79. [79]

      DEZ C, TOLLERVEY D. Curr. Opin. Cell Biol., 2004, 7(6): 631-637.

    80. [80]

      SHIVALINGAM A, IZQUIERDO M A, LE MAROIS A, VYSNIAUSKAS A, SUHLING K, KUIMOVA M K, VILAR R. Nat. Commun., 2015, 6: 8718.

    81. [81]

      LI L L, XU H R, LI K, YANG Q, PAN S L, YU X Q. Sens. Actuators, B, 2019, 286: 575-582.

    82. [82]

      CHEN H B, SUN H X, ZHANG S G, YAN W P, LI Q, GUAN A J, XIANG J F, LIU M R, TANG Y L. Chem. Commun., 2019, 55(35): 5060-5063.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(31)
  • Abstract views(2020)
  • HTML views(405)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return