Citation: HUANG Zi-Heng, ZOU Jian-Mei, LI Xiao-Qing, HE Qing, NIE Jin-Fang. Research Progress of Fluorescent Probe for G-quadruplex[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1258-1269. doi: 10.19756/j.issn.0253-3820.201797
-
G-quadruplex is a kind of secondary structure of nucleic acids that is formed by the stacking of guanine-rich oligonucleotides. It has been reported that G-quadruplexes widely locate in the human genome (Telomere, gene promoter and so on) and play important roles in regulation of gene transcription and expression, stabilization of gene and synthesis of telomere. This indicates that the structure, quantity and distribution of G-quadruplex in organism are related to the occurrence and development of various diseases to some extent. Therefore, the real-time monitoring of G-quadruplex in organism has great significance for the diagnosis and treatment of diseases. Fluorescence spectrometry technique shows many advantages such as high sensitivity and convenience in practice, and has become one of the main tools for detection and identification of G-quadruplex. Herein, the recent development of G-quadruplex fluorescent probes (including porphyrins, thiazole orange, Thioflavin T, etc.) and the research progress of biosensors and fluorescence cell imaging based on the specific recognition reaction between G-quadruplex and probes are reviewed.
-
Keywords:
- G-quadruplex,
- Fluorescent probe,
- Biosensor,
- Fluorescence cell imaging,
- Review
-
-
[1]
WATSON J D, CRICK F H. Nature, 1953, 171(4356): 737-738.
-
[2]
SWADLING J B, ISHII K, TAHARA T, KITAO A. Phys. Chem. Chem. Phys., 2018, 20(5): 2990-3001.
-
[3]
DAYN A, MALKHOSYAN S, MIRKIN S M. Nucleic Acids Res., 1992, 20(22): 5991-5997.
-
[4]
LIMONGELLI V, TITO S D, CEROFOLINI L, FRAGAI M, PAGANO B, TROTTA R, COSCONATI S, MARINELLI L, NOVELLINO E, BERTINI I. Angew. Chem., Int. Ed., 2013, 52(8): 2269-2273.
-
[5]
GELLERT M, LIPSETT M N, DAVIES D R. Proc. Natl. Acad. Sci. U. S. A., 1962, 48(12): 2013-2018.
-
[6]
KETTANI A, BOUAZIZ S, GORIN A, ZHAO H, JONES R A, PATEL D J. J. Mol. Biol., 1998, 282(3): 619-636.
-
[7]
RHODES D, LIPPS H J. Nucleic Acids Res., 2015, 43(18): 8627-8637.
-
[8]
VERDUN R E, KARLSEDER J. Nature, 2007, 447(7147): 924-931.
-
[9]
AWADASSEID A, MA X D, WU Y L, ZHANG W. Biomed. Pharmacother., 2021, 139: 111550.
-
[10]
CHILKA P, DESAI N, DATTA B. Molecules, 2019, 24(4): 752-767.
-
[11]
WINNERDY F R, BAKALAR B, MAITY A, VANDANA J J, MECHULAM Y, SCHMITT E, PHAN A T. Nucleic Acids Res., 2019, 47(15): 8272-8281.
-
[12]
ADRIAN M, HEDDI B, PHAN A T. Methods, 2012, 57(1): 11-24.
-
[13]
TOTHOVA P, KRAFCIKOVA P, VIGLASKY V. Biochemistry, 2014, 53(45): 7013-7027.
-
[14]
OLSEN C M, MARKY L A. Methods Mol. Biol., 2010, 608: 147-158.
-
[15]
YIN S, LOO J A. Int. J. Mass spectrom., 2011, 300(2-3): 118-122.
-
[16]
ZHENG K W, CHEN Z, HAO Y H, TAN Z. Nucleic Acids Res., 2010, 38(1): 327-338.
-
[17]
JIN B, ZHANG X, ZHENG W, LIU X J, QI C, WANG F Y, SHANGGUAN D H. Anal. Chem., 2014, 86(1): 943-952.
-
[18]
HE H Z, CHAND S H, LEUNG C H, MA D L. Nucleic Acids Res., 2013, 41(8): 4345-4359.
-
[19]
UMAR M I, JI D Y, CHAN C Y, KWOK C K. Molecules, 2019, 24(13): 2416.
-
[20]
BURGE S, PARKINSON G N, HAZEL P, TODD A K, NEIDLE S. Nucleic Acids Res., 2006, 34(19): 5402-5415.
-
[21]
ZIMMERMAN S B, COHEN G H, DAVIES D R. J. Mol. Biol., 1975, 92(2): 181-192.
-
[22]
DAVIS J T. Angew. Chem., 2010, 43(6): 668-698.
-
[23]
SIMONSSON T. Biol. Chem., 2001, 382(4): 621-628.
-
[24]
KINGSBURY C J, SENGE M O. Coord. Chem. Rev., 2021, 431: 213760.
-
[25]
DUFOUR E, MARDEN M C, TOMASZ H. FEBS Lett., 1990, 277(1-2): 223-226.
-
[26]
LI Y F, GEYER C R, DIPANKAR S. Biochemistry, 1996, 35(21): 6911-6922.
-
[27]
LI T, WANG E K, DONG S J. Anal. Chem., 2010, 82(18): 7576-7580.
-
[28]
HUO Y F, ZHU L N, LIX Y, HAN G M, KONG D M. Sens. Actuators, B, 2016, 237: 179-189.
-
[29]
ZHU L N, ZHAO S J, WU B, LI X Z, KONG D M. PloS One, 2012, 7(5): e35586.
-
[30]
ZHANG R, CHENG M, ZHANG L M, ZHU L N, KONG D M. ACS Appl. Mater. Interfaces, 2018, 10(16): 13350-13360.
-
[31]
MATHEW D, SUJATHA S. J. Inorg. Biochem., 2021, 219: 111434.
-
[32]
KEANE P M, KELLY J M. Coord. Chem. Rev., 2018, 364: 137-154.
-
[33]
RYAZANOVA O, ZOZULYA V, VOLOSHIN I, DUBEY L, DUBEY I, KARACHEVTSEV V. J. Fluoresc., 2015, 25(6): 1897-1904.
-
[34]
SABHARWAL N C, MENDOZA O, NICOLUDIS J M, RUAN T, MERGNY J L, YATSUNYK L A. JBIC, J. Biol. Inorg. Chem., 2016, 21(2): 227-239.
-
[35]
SABATER L, FANG P J, CHANG C F, DE RACHE A D, PRADO E, DEJEU J, GAROFALO A, LIN J H, MERGNY J L, DEFRANCQ E. Dalton Trans., 2015, 44(8): 3701-3707.
-
[36]
MUSETTI C, SPAGNUL C, MION G, ROS S D, GIANFERRARA T, SISSI C. ChemPlusChem, 2015, 80(1): 158-168.
-
[37]
NYGREN J, SVANVIK N, KUBISTA M. Biopolymers, 1998, 46(1): 39-51.
-
[38]
MOHANTY J, BAROOAH N, DHAMODHARAN V, HARIKRISHNA S, PRADEEPKUMAR P I, BHASIKUTTAN A C. J. Am. Chem. Soc., 2013, 135(1): 367-376.
-
[39]
BHOWMIK S, TAKAHASHI S, SUGIMOTO N. ACS Omega, 2019, 4(2): 4325-4329.
-
[40]
WANG Y Q, HU M H, GUO R J, CHEN S B, HUANG Z S, TAN J H. Sens. Actuators, B, 2018, 266: 187-194.
-
[41]
YANG P, CIAN A D,TEULADE-FICHOU M P, MERGNY J L, MONCHAUD D. Angew. Chem., Int. Ed., 2009, 48(12): 2188-2191.
-
[42]
OHEIM M, MICHAEL D J, GEISBAUER M, MADSEN D, CHOW R H. Adv.Drug Delivery Rev., 2006, 58(7): 788-808.
-
[43]
ZHANG F, LI G, LV F L, JIANG G B, WANG H X, WANG M Q, LI S. Tetrahedron Lett., 2018, 59(34): 3272-3278.
-
[44]
LI Y, XU S, WU X, XU Q, ZHAO Y H, LOU X H, YANG X B. Anal. Bioanal. Chem., 2016, 408(28): 8025-8036.
-
[45]
KATAOKA Y, FUJITA H, KASAHARA Y, YOSHIHARA T, TOBITA S, KUWAHARA M. Anal. Chem., 2014, 86(24): 12078-12084.
-
[46]
GUAN A J, ZHANG X F, SUN X, LI Q, XIANG J F, WANG L X, LAN L, YANG F M, XU S J, GUO X M, TANG Y L. Sci. Rep., 2018, 8: 2666.
-
[47]
YIN J L, MA Y Y, LI G H, PENG M, LIN W Y. Coord. Chem. Rev., 2020, 412: 213257.
-
[48]
CHANG C C, WU J Y, CHANG T C. J. Chin. Chem. Soc., 2003, 50(2): 185-188.
-
[49]
DENG Q R, WANG N, SU J K, LIU A J, ZHANG J, LONG L P, QI F P, TANG R R, LIU C H. Anal. Methods, 2019, 11(20): 2630-2633.
-
[50]
DAI H, HUANG M L, QIAN J Q, LIU J, MENG C, LI Y Y, MING G X, ZHANG T, WANG S L, SHI Y J. Eur. J. Med. Chem., 2019, 166: 470-479.
-
[51]
AMIN K M, RAHMAN D E A, ALLAM H A, EL-ZOHEIRY H H. Bioorg. Chem., 2021, 110: 104792.
-
[52]
JUNG H S, KWON P S, LEE J W, KIM J I, HONG C S, KIM J W, YAN S, LEE J Y, LEE J H, JOO T, KIM J S. J. Am. Chem. Soc., 2009, 131(5): 2008-2012.
-
[53]
KWON H, LEE K, KIM H J. Chem. Commun., 2011, 47(6): 1773-1775.
-
[54]
WANG K N, MA L, LIU G Q, CAO D X, GUAN R F, LIU Z Q. Dyes Pigm., 2016, 126: 104-109.
-
[55]
XIE X, REZNICHENKO O, CHAPUT L, MARTIN P, TEULADE-FICHOU M P, GRANZHAN A. Chemistry, 2018, 24(48): 12638-12651.
-
[56]
DEORE P S, COMAN D S, MANDERVILLE R A. Chem. Commun., 2019, 55(24): 3540-3543.
-
[57]
NARAYANASWAMY N, KUMAR M, DAS S, SHARMA R, SAMANTA P K, PATI S K, DHAR S K, KUNDU T K, GOVINDARAJU T. Sci. Rep., 2014, 4: 6476.
-
[58]
JIANG N, FAN J L, XU F, PENG X J, MU H Y, WANG J Y, XIONG X Q. Angew. Chem., Int. Ed., 2015, 54(8): 2510-2514.
-
[59]
PAJONK F, SCHOLBER J, FIEBICH B. Cancer Chemoth. Pharm., 2005, 55(5): 439-446.
-
[60]
ZHANG X, JIN B, ZHENG W, ZHANG N, LIU X J, BING T, WEI Y B, WANG F Y, SHANGGUAN D H. Dyes Pigm., 2016, 132: 405-411.
-
[61]
DEORE P S, MANDERVILLE R A. New J. Chem., 2019, 43(13): 4994-4997.
-
[62]
GRANDE V, SHEN C A, DEIANA M, DUDEK M, OLESIAK-BANSKA J, MATCZYSZYN K, WURTHNER F. Chem. Sci., 2018, 9(44): 8375-8381.
-
[63]
LIU L L, SHAO Y, PENG J, HUANG C B, LIU H, ZHANG L H. Anal. Chem., 2014, 86(3): 1622-1631.
-
[64]
KONG D M, GUO J H, YANG W, MA Y E, SHEN H X. Biosens. Bioelectron., 2009, 25(1): 88-93.
-
[65]
NAGATOISHI S, NOJIMA T, JUSKOWIAK B, TAKENAKA S. Angew. Chem., Int. Ed., 2005, 44(32): 5067-5070.
-
[66]
HE H Z, WANG M D, CHAND S H, LEUNG C H, LIN X X, LIN J M, MA D L. Methods, 2013, 64(3): 212-217.
-
[67]
ZHOU X, KHUSBU F Y, CHEN H C, MA C B. Talanta, 2020, 208: 120453.
-
[68]
ZHAO H Z, LIU Q, LIU M, JIN Y, LI B X. Talanta, 2017, 165: 653-658.
-
[69]
SUN X, LI Q, XIANG J F, WANG L X, ZHANG X F, LAN L, XU S J, YANG F M, TANG Y L. Analyst, 2017, 142(18): 3352-3355.
-
[70]
GUO L Q, NIE D D, QIU C Y, ZHENG Q S, WU H Y, YE P R, HAO Y L, FU F F, CHEN G N. Biosens.Bioelectron., 2012, 35(1): 123-127.
-
[71]
ZHU Q, LIU L H, XING Y P, ZHOU X H. J. Hazard. Mater., 2018, 355: 50-55.
-
[72]
XU L J, CHEN Y, ZHANG R H, GAO T, ZHANG Y J, SHEN X Q, PEI R J. J. Fluoresc., 2017, 27(2): 569-574.
-
[73]
ZHOU Z X, ZHU J B, ZHANG L B, DU Y, DONG S J, WANG E K. Anal. Chem., 2013, 85(4): 2431-2435.
-
[74]
YANG C L, HU R, LI Q, LI S, XIANG J F, GUO X D, WANG S Q, ZENG Y, LI Y, YANG G Q. ACS Omega, 2018, 3(9): 10487-10492.
-
[75]
ZHANG S G, SUN H X, WANG L X, LIU Y, CHEN H B, LI Q, GUAN A J, LIU M R, TANG Y L. Nucleic Acids Res., 2018, 46(15): 7522-7532.
-
[76]
ANJONG T F, KIM G, JANG H Y, YOON J, KIM J. New J. Chem., 2017, 41(10): 4241-4241.
-
[77]
LU Y J, HU D P, ZHANG K, WONG W L, CHOW C F. Biosens. Bioelectron., 2016, 81: 373-381.
-
[78]
MURRAY J M, CARR A M. Curr. Opin. Cell Biol., 2018, 52: 120-125.
-
[79]
DEZ C, TOLLERVEY D. Curr. Opin. Cell Biol., 2004, 7(6): 631-637.
-
[80]
SHIVALINGAM A, IZQUIERDO M A, LE MAROIS A, VYSNIAUSKAS A, SUHLING K, KUIMOVA M K, VILAR R. Nat. Commun., 2015, 6: 8718.
-
[81]
LI L L, XU H R, LI K, YANG Q, PAN S L, YU X Q. Sens. Actuators, B, 2019, 286: 575-582.
-
[82]
CHEN H B, SUN H X, ZHANG S G, YAN W P, LI Q, GUAN A J, XIANG J F, LIU M R, TANG Y L. Chem. Commun., 2019, 55(35): 5060-5063.
-
[1]
-
-
[1]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[2]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[3]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[4]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[5]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[6]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[7]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[8]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[9]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[10]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[11]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[12]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[15]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[16]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[17]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[18]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[19]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[20]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[1]
Metrics
- PDF Downloads(25)
- Abstract views(1404)
- HTML views(343)