Citation: HAN Ya-Jing, WANG Feng-Lin, JIANG Jian-Hui. Progress and Applications of Chemodynamic Therapy in Cancer Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1121-1132. doi: 10.19756/j.issn.0253-3820.201734
-
Chemodynamic therapy (CDT) is receiving increasing attention for tumor therapy. In the presence of catalysts, H2O2 can be converted into ·OH that possesses stronger oxidation and higher toxicity through the Fenton or Fenton-like reaction utilizing the unique feature of tumor microenvironments such as weak acidity and excessive H2O2. The generated ·OH can disrupt the ROS homeostasis in tumor cells and leads to severe oxidative stress, which can cause DNA necrosis, protein inactivation, lipid oxidation and finally induce cell apoptosis or necrosis. CDT is characterized by high specificity and independence and it is especially suitable for the treatment of tumors in deep tissues. However, the development of CDT is still in its infancy, and its therapeutic efficiency is still not satisfactory. To improve the efficacy of CDT, three different strategies have been introduced, i.e., changing tumor microenvironment, selecting appropriate catalyst and substrate, and combining with other treatment methods. In this paper, we summarize the recent development of CDT in tumor treatment and briefly point out its application prospects.
-
-
[1]
YANG B, CHEN Y, SHI J. Adv. Mater., 2019, 31(39): 1901778.
-
[2]
TRACHOOTHAM D, ALEXANDRE J, HUANG P. Nat. Rev. Drug Discov., 2009, 8(7): 579-591.
-
[3]
D’AUTRéAUX B, TOLEDANO M B. Nat. Rev. Mol. Cell. Biol., 2007, 8(10): 813-824.
-
[4]
LIN H, CHEN Y, SHI J. Chem. Soc. Rev., 2018, 47(6): 1938-1958.
-
[5]
CHEN J, ZHU Y, WU C, SHI J. Chem. Soc. Rev., 2020, 49(24): 9057-9094.
-
[6]
ZHANG C, BU W, NI D, ZHANG S, LI Q, YAO Z, ZHANG J, YAO H, WANG Z, SHI J. Angew. Chem., Int. Ed., 2016, 55(6): 2101-2106.
-
[7]
FENG W, CHEN Y. J. Mater. Chem. B, 2020, 8(31): 6753-6764.
-
[8]
TANG Z, LIU Y, HE M, BU W. Angew. Chem., Int. Ed., 2019, 58(4): 946-956.
-
[9]
ZENG K, XU Q, OUYANG J, HAN Y, SHENG J, WEN M, CHEN W, LIU Y N. ACS Appl. Mater. Interfaces, 2019, 11(7): 6840-6849.
-
[10]
YANG G, XU L, CHAO Y, XU J, SUN X, WU Y, PENG R, LIU Z. Nat. Commun., 2017, 8: 902.
-
[11]
QIAN X, ZHANG J, GU Z, CHEN Y. Biomaterials, 2019, 211: 1-13.
-
[12]
WANG Z, ZHANG Y, JU E, LIU Z, CAO F, CHEN Z, REN J, QU X. Nat. Commun., 2018, 9: 3334.
-
[13]
ZHU Y, ZHU R, XI Y, ZHU J, ZHU G, HE H. Appl. Catal. B, 2019, 255: 117739.
-
[14]
RANJI-BURACHALOO H, GURR P A, DUNSTAN D E, QIAO G G. ACS Nano, 2018, 12(12): 11819-11837.
-
[15]
MURPHY MICHAEL P. Biochem. J., 2008, 417(1): 1-13.
-
[16]
ZHAI S, HU X, HU Y, WU B, XING D. Biomaterials, 2017, 121: 41-54.
-
[17]
GAO S S, LU X Y, ZHU P, LIN H, YU L D, YAO H L, WEI C Y, CHEN Y, SHI J L. J. Mater. Chem. B, 2019, 7(22): 3599-3609.
-
[18]
ZHANG L, WAN S S, LI C X, XU L, CHENG H, ZHANG X Z. Nano Lett., 2018, 18(12): 7609-7618.
-
[19]
LIN L S, HUANG T, SONG J, OU X Y, WANG Z, DENG H, TIAN R, LIU Y, WANG J F, LIU Y, YU G, ZHOU Z, WANG S, NIU G, YANG H H, CHEN X. J. Am. Chem. Soc., 2019, 141(25): 9937-9945.
-
[20]
SANG Y, CAO F, LI W, ZHANG L, YOU Y, DENG Q, DONG K, REN J, QU X. J. Am. Chem. Soc., 2020, 142(11): 5177-5183.
-
[21]
LIU X, YAN Z, ZHANG Y, LIU Z, SUN Y, REN J, QU X. ACS Nano, 2019, 13(5): 5222-5230.
-
[22]
FENG L, XIE R, WANG C, GAI S, HE F, YANG D, YANG P, LIN J. ACS Nano, 2018, 12(11): 11000-11012.
-
[23]
HUO M, WANG L, CHEN Y, SHI J. Nat. Commun., 2017, 8: 357.
-
[24]
CHEN Z, YIN J J, ZHOU Y T, ZHANG Y, SONG L, SONG M, HU S, GU N. ACS Nano, 2012, 6(5): 4001-4012.
-
[25]
TIAN Z, YANG K, YAO T, LI X, MA Y, QU C, QU X, XU Y, GUO Y, QU Y. Small, 2019, 15(46): 1903746.
-
[26]
WANG Y, YIN W, KE W, CHEN W, HE C, GE Z. Biomacromolecules, 2018, 19(6): 1990-1998.
-
[27]
PARK S C, KIM N H, YANG W, NAH J W, JANG M K, LEE D. J. Controlled Release, 2016, 221: 37-47.
-
[28]
TANG Z M, LIU Y Y, NI D L, ZHOU J J, ZHANG M, ZHAO P R, LV B, WANG H, JIN D Y, BU W B. Adv. Mater., 2020, 32(4): 1904011.
-
[29]
LIN L S, WANG J F, SONG J, LIU Y, ZHU G, DAI Y, SHEN Z, TIAN R, SONG J, WANG Z, TANG W, YU G, ZHOU Z, YANG Z, HUANG T, NIU G, YANG H H, CHEN Z Y, CHEN X. Theranostics, 2019, 9(24): 7200-7209.
-
[30]
ZHANG M, SHEN B, SONG R, WANG H, LV B, MENG X, LIU Y, LIU Y, ZHENG X, SU W, ZUO C, BU W. Mater. Horiz., 2019, 6(5): 1034-1040.
-
[31]
LI W P, SU C H, CHANG Y C, LIN Y J, YEH C S. ACS Nano, 2016, 10(2): 2017-2027.
-
[32]
HAN Y, OUYANG J, LI Y, WANG F, JIANG J-H. ACS Appl. Mater. Interfaces, 2020, 12(1): 288-297.
-
[33]
FAN J X, PENG M Y, WANG H, ZHENG H R, LIU Z L, LI C X, WANG X N, LIU X H, CHENG S X, ZHANG X Z. Adv. Mater., 2019, 31(16): 1808278.
-
[34]
BREUNIG M, BAUER S, GOEPFERICH A. Eur. J. Pharm. Biopharm., 2008, 68(1): 112-128.
-
[35]
KANG Y W, HWANG K Y. Water Res., 2000, 34(10): 2786-2790.
-
[36]
LIU Y, JI X, TONG W W L, ASKHATOVA D, YANG T, CHENG H, WANG Y, SHI J. Angew. Chem., Int. Ed., 2018, 57(6): 1510-1513.
-
[37]
FU L H, HU Y R, QI C, HE T, JIANG S, JIANG C, HE J, QU J, LIN J, HUANG P. ACS Nano, 2019, 13(12): 13985-13994.
-
[38]
WANG Z, LIU B, SUN Q, DONG S, KUANG Y, DONG Y, HE F, GAI S, YANG P. ACS Appl. Mater. Interfaces, 2020, 12(15): 17254-17267.
-
[39]
LIN L S, SONG J, SONG L, KE K, LIU Y, ZHOU Z, SHEN Z, LI J, YANG Z, TANG W, NIU G, YANG H H, CHEN X. Angew. Chem., Int. Ed., 2018, 57(18): 4902-4906.
-
[40]
DONG Z, FENG L, CHAO Y, HAO Y, CHEN M, GONG F, HAN X, ZHANG R, CHENG L, LIU Z. Nano Lett., 2019, 19(2): 805-815.
-
[41]
LIU Y, ZHEN W, JIN L, ZHANG S, SUN G, ZHANG T, XU X, SONG S, WANG Y, LIU J, ZHANG H. ACS Nano, 2018, 12(5): 4886-4893.
-
[42]
WANG J Q, LIU Y H, CHEN M W, XIE G Q, LOUZGUINE-LUZGIN D V, INOUE A, PEREPEZKO J H. Adv. Funct. Mater., 2012, 22(12): 2567-2570.
-
[43]
LI X, HUANG X, XI S, MIAO S, DING J, CAI W, LIU S, YANG X, YANG H, GAO J, WANG J, HUANG Y, ZHANG T, LIU B. J. Am. Chem. Soc., 2018, 140(39): 12469-12475.
-
[44]
WANG L, DENG L, LIU Y N. Chem. -Eur. J., 2019, 25(4): 904-912.
-
[45]
TANG F, WANG L, DESSIE WALLE M, MUSTAPHA A, LIU Y N. J. Catal., 2020, 383: 172-180.
-
[46]
HUO M, WANG L, WANG Y, CHEN Y, SHI J. ACS Nano, 2019, 13(2): 2643-2653.
-
[47]
MA B, WANG S, LIU F, ZHANG S, DUAN J, LI Z, KONG Y, SANG Y, LIU H, BU W, LI L. J. Am. Chem. Soc., 2019, 141(2): 849-857.
-
[48]
LIN L, WANG S, DENG H, YANG W, RAO L, TIAN R, LIU Y, YU G, ZHOU Z, SONG J, YANG H H, CHEN Z Y, CHEN X. J. Am. Chem. Soc., 2020, 142(36): 15320-15330.
-
[49]
MENG X, ZHANG X, LIU M, CAI B, HE N, WANG Z. Appl. Mater. Today, 2020, 21: 100864.
-
[50]
LI S L, JIANG P, JIANG F L, LIU Y. Adv. Funct. Mater., 2021: 2100243.
-
[51]
LIU Y, ZHEN W, WANG Y, LIU J, JIN L, ZHANG T, ZHANG S, ZHAO Y, SONG S, LI C, ZHU J, YANG Y, ZHANG H. Angew. Chem., Int. Ed., 2019, 58(8): 2407-2412.
-
[52]
TANG Z, ZHANG H, LIU Y, NI D, ZHANG H, ZHANG J, YAO Z, HE M, SHI J, BU W. Adv. Mater., 2017, 29(47): 1701683.
-
[53]
WANG P, LIANG C, ZHU J, YANG N, JIAO A, WANG W, SONG X, DONG X. ACS Appl. Mater. Interfaces, 2019, 11(44): 41140-41147.
-
[54]
LAN G, NI K, XU Z, VERONEAU S S, SONG Y, LIN W. J. Am. Chem. Soc., 2018, 140(17): 5670-5673.
-
[55]
OU C, ZHANG Y, GE W, ZHONG L, HUANG Y, SI W, WANG W, ZHAO Y, DONG X. Chem. Commun., 2020, 56(46): 6281-6284.
-
[56]
LIU C, CAO Y, CHENG Y, WANG D, XU T, SU L, ZHANG X, DONG H. Nat. Commun., 2020, 11: 1735.
-
[57]
ZHONG X, WANG X, CHENG L, TANG Y A, ZHAN G, GONG F, ZHANG R, HU J, LIU Z, YANG X. Adv. Funct. Mater., 2020, 30(4): 1907954.
-
[58]
DU J, ZHENG X, YONG Y, YU J, DONG X, ZHANG C, ZHOU R, LI B, YAN L, CHEN C, GU Z, ZHAO Y. Nanoscale, 2017, 9(24): 8229-8239.
-
[59]
DAI Y, YANG Z, CHENG S, WANG Z, ZHANG R, ZHU G, WANG Z, YUNG B C, TIAN R, JACOBSON O, XU C, NI Q, SONG J, SUN X, NIU G, CHEN X. Adv. Mater., 2018, 30(8): 1704877.
-
[60]
GAO S, JIN Y, GE K, LI Z, LIU H, DAI X, ZHANG Y, CHEN S, LIANG X, ZHANG J. Adv. Sci., 2019, 6(24): 1902137.
-
[61]
REN Z, SUN S, SUN R, CUI G, HONG L, RAO B, LI A, YU Z, KAN Q, MAO Z. Adv. Mater., 2020, 32(6): 1906024.
-
[62]
SUN P, DENG Q, KANG L, SUN Y, REN J, QU X. ACS Nano, 2020, 14(10): 13894-13904.
-
[63]
WANG S, WANG Z, YU G, ZHOU Z, JACOBSON O, LIU Y, MA Y, ZHANG F, CHEN Z Y, CHEN X. Adv. Sci., 2019, 6(5): 1801986.
-
[64]
GRAZIEWICZ M, WINK D A, LAVAL F. Carcinogenesis, 1996, 17(11): 2501-2505.
-
[65]
WINK D A, MITCHELL J B. Free Radical Biol. Med., 1998, 25(4): 434-456.
-
[66]
HU Y, LV T, MA Y, XU J, ZHANG Y, HOU Y, HUANG Z, DING Y. Nano Lett., 2019, 19(4): 2731-2738.
-
[67]
ZHANG L, WAN S S, LI C X, XU L, CHENG H, ZHANG X Z. Nano Lett., 2018, 18(12): 7609-7618.
-
[68]
DUAN H, GUO H, ZHANG R, WANG F, LIU Z, GE M, YU L, LIN H, CHEN Y. Biomaterials, 2020, 256: 120206.
-
[69]
GONG F, CHEN M, YANG N, DONG Z, TIAN L, HAO Y, ZHUO M, LIU Z, CHEN Q, CHENG L. Adv. Funct. Mater., 2020, 30(49): 2002753.
-
[1]
-
-
[1]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[2]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[3]
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
-
[4]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[5]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
-
[8]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[12]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[13]
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
-
[16]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[17]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[18]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[19]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[20]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1581)
- HTML views(543)