Citation: HAN Ya-Jing,  WANG Feng-Lin,  JIANG Jian-Hui. Progress and Applications of Chemodynamic Therapy in Cancer Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1121-1132. doi: 10.19756/j.issn.0253-3820.201734 shu

Progress and Applications of Chemodynamic Therapy in Cancer Therapy

  • Corresponding author: WANG Feng-Lin,  JIANG Jian-Hui, 
  • Received Date: 7 December 2020
    Revised Date: 21 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21527810, 91753107, 21705041).

  • Chemodynamic therapy (CDT) is receiving increasing attention for tumor therapy. In the presence of catalysts, H2O2 can be converted into ·OH that possesses stronger oxidation and higher toxicity through the Fenton or Fenton-like reaction utilizing the unique feature of tumor microenvironments such as weak acidity and excessive H2O2. The generated ·OH can disrupt the ROS homeostasis in tumor cells and leads to severe oxidative stress, which can cause DNA necrosis, protein inactivation, lipid oxidation and finally induce cell apoptosis or necrosis. CDT is characterized by high specificity and independence and it is especially suitable for the treatment of tumors in deep tissues. However, the development of CDT is still in its infancy, and its therapeutic efficiency is still not satisfactory. To improve the efficacy of CDT, three different strategies have been introduced, i.e., changing tumor microenvironment, selecting appropriate catalyst and substrate, and combining with other treatment methods. In this paper, we summarize the recent development of CDT in tumor treatment and briefly point out its application prospects.
  • 加载中
    1. [1]

      YANG B, CHEN Y, SHI J. Adv. Mater., 2019, 31(39): 1901778.

    2. [2]

      TRACHOOTHAM D, ALEXANDRE J, HUANG P. Nat. Rev. Drug Discov., 2009, 8(7): 579-591.

    3. [3]

      D’AUTRéAUX B, TOLEDANO M B. Nat. Rev. Mol. Cell. Biol., 2007, 8(10): 813-824.

    4. [4]

      LIN H, CHEN Y, SHI J. Chem. Soc. Rev., 2018, 47(6): 1938-1958.

    5. [5]

      CHEN J, ZHU Y, WU C, SHI J. Chem. Soc. Rev., 2020, 49(24): 9057-9094.

    6. [6]

      ZHANG C, BU W, NI D, ZHANG S, LI Q, YAO Z, ZHANG J, YAO H, WANG Z, SHI J. Angew. Chem., Int. Ed., 2016, 55(6): 2101-2106.

    7. [7]

      FENG W, CHEN Y. J. Mater. Chem. B, 2020, 8(31): 6753-6764.

    8. [8]

      TANG Z, LIU Y, HE M, BU W. Angew. Chem., Int. Ed., 2019, 58(4): 946-956.

    9. [9]

      ZENG K, XU Q, OUYANG J, HAN Y, SHENG J, WEN M, CHEN W, LIU Y N. ACS Appl. Mater. Interfaces, 2019, 11(7): 6840-6849.

    10. [10]

      YANG G, XU L, CHAO Y, XU J, SUN X, WU Y, PENG R, LIU Z. Nat. Commun., 2017, 8: 902.

    11. [11]

      QIAN X, ZHANG J, GU Z, CHEN Y. Biomaterials, 2019, 211: 1-13.

    12. [12]

      WANG Z, ZHANG Y, JU E, LIU Z, CAO F, CHEN Z, REN J, QU X. Nat. Commun., 2018, 9: 3334.

    13. [13]

      ZHU Y, ZHU R, XI Y, ZHU J, ZHU G, HE H. Appl. Catal. B, 2019, 255: 117739.

    14. [14]

      RANJI-BURACHALOO H, GURR P A, DUNSTAN D E, QIAO G G. ACS Nano, 2018, 12(12): 11819-11837.

    15. [15]

      MURPHY MICHAEL P. Biochem. J., 2008, 417(1): 1-13.

    16. [16]

      ZHAI S, HU X, HU Y, WU B, XING D. Biomaterials, 2017, 121: 41-54.

    17. [17]

      GAO S S, LU X Y, ZHU P, LIN H, YU L D, YAO H L, WEI C Y, CHEN Y, SHI J L. J. Mater. Chem. B, 2019, 7(22): 3599-3609.

    18. [18]

      ZHANG L, WAN S S, LI C X, XU L, CHENG H, ZHANG X Z. Nano Lett., 2018, 18(12): 7609-7618.

    19. [19]

      LIN L S, HUANG T, SONG J, OU X Y, WANG Z, DENG H, TIAN R, LIU Y, WANG J F, LIU Y, YU G, ZHOU Z, WANG S, NIU G, YANG H H, CHEN X. J. Am. Chem. Soc., 2019, 141(25): 9937-9945.

    20. [20]

      SANG Y, CAO F, LI W, ZHANG L, YOU Y, DENG Q, DONG K, REN J, QU X. J. Am. Chem. Soc., 2020, 142(11): 5177-5183.

    21. [21]

      LIU X, YAN Z, ZHANG Y, LIU Z, SUN Y, REN J, QU X. ACS Nano, 2019, 13(5): 5222-5230.

    22. [22]

      FENG L, XIE R, WANG C, GAI S, HE F, YANG D, YANG P, LIN J. ACS Nano, 2018, 12(11): 11000-11012.

    23. [23]

      HUO M, WANG L, CHEN Y, SHI J. Nat. Commun., 2017, 8: 357.

    24. [24]

      CHEN Z, YIN J J, ZHOU Y T, ZHANG Y, SONG L, SONG M, HU S, GU N. ACS Nano, 2012, 6(5): 4001-4012.

    25. [25]

      TIAN Z, YANG K, YAO T, LI X, MA Y, QU C, QU X, XU Y, GUO Y, QU Y. Small, 2019, 15(46): 1903746.

    26. [26]

      WANG Y, YIN W, KE W, CHEN W, HE C, GE Z. Biomacromolecules, 2018, 19(6): 1990-1998.

    27. [27]

      PARK S C, KIM N H, YANG W, NAH J W, JANG M K, LEE D. J. Controlled Release, 2016, 221: 37-47.

    28. [28]

      TANG Z M, LIU Y Y, NI D L, ZHOU J J, ZHANG M, ZHAO P R, LV B, WANG H, JIN D Y, BU W B. Adv. Mater., 2020, 32(4): 1904011.

    29. [29]

      LIN L S, WANG J F, SONG J, LIU Y, ZHU G, DAI Y, SHEN Z, TIAN R, SONG J, WANG Z, TANG W, YU G, ZHOU Z, YANG Z, HUANG T, NIU G, YANG H H, CHEN Z Y, CHEN X. Theranostics, 2019, 9(24): 7200-7209.

    30. [30]

      ZHANG M, SHEN B, SONG R, WANG H, LV B, MENG X, LIU Y, LIU Y, ZHENG X, SU W, ZUO C, BU W. Mater. Horiz., 2019, 6(5): 1034-1040.

    31. [31]

      LI W P, SU C H, CHANG Y C, LIN Y J, YEH C S. ACS Nano, 2016, 10(2): 2017-2027.

    32. [32]

      HAN Y, OUYANG J, LI Y, WANG F, JIANG J-H. ACS Appl. Mater. Interfaces, 2020, 12(1): 288-297.

    33. [33]

      FAN J X, PENG M Y, WANG H, ZHENG H R, LIU Z L, LI C X, WANG X N, LIU X H, CHENG S X, ZHANG X Z. Adv. Mater., 2019, 31(16): 1808278.

    34. [34]

      BREUNIG M, BAUER S, GOEPFERICH A. Eur. J. Pharm. Biopharm., 2008, 68(1): 112-128.

    35. [35]

      KANG Y W, HWANG K Y. Water Res., 2000, 34(10): 2786-2790.

    36. [36]

      LIU Y, JI X, TONG W W L, ASKHATOVA D, YANG T, CHENG H, WANG Y, SHI J. Angew. Chem., Int. Ed., 2018, 57(6): 1510-1513.

    37. [37]

      FU L H, HU Y R, QI C, HE T, JIANG S, JIANG C, HE J, QU J, LIN J, HUANG P. ACS Nano, 2019, 13(12): 13985-13994.

    38. [38]

      WANG Z, LIU B, SUN Q, DONG S, KUANG Y, DONG Y, HE F, GAI S, YANG P. ACS Appl. Mater. Interfaces, 2020, 12(15): 17254-17267.

    39. [39]

      LIN L S, SONG J, SONG L, KE K, LIU Y, ZHOU Z, SHEN Z, LI J, YANG Z, TANG W, NIU G, YANG H H, CHEN X. Angew. Chem., Int. Ed., 2018, 57(18): 4902-4906.

    40. [40]

      DONG Z, FENG L, CHAO Y, HAO Y, CHEN M, GONG F, HAN X, ZHANG R, CHENG L, LIU Z. Nano Lett., 2019, 19(2): 805-815.

    41. [41]

      LIU Y, ZHEN W, JIN L, ZHANG S, SUN G, ZHANG T, XU X, SONG S, WANG Y, LIU J, ZHANG H. ACS Nano, 2018, 12(5): 4886-4893.

    42. [42]

      WANG J Q, LIU Y H, CHEN M W, XIE G Q, LOUZGUINE-LUZGIN D V, INOUE A, PEREPEZKO J H. Adv. Funct. Mater., 2012, 22(12): 2567-2570.

    43. [43]

      LI X, HUANG X, XI S, MIAO S, DING J, CAI W, LIU S, YANG X, YANG H, GAO J, WANG J, HUANG Y, ZHANG T, LIU B. J. Am. Chem. Soc., 2018, 140(39): 12469-12475.

    44. [44]

      WANG L, DENG L, LIU Y N. Chem. -Eur. J., 2019, 25(4): 904-912.

    45. [45]

      TANG F, WANG L, DESSIE WALLE M, MUSTAPHA A, LIU Y N. J. Catal., 2020, 383: 172-180.

    46. [46]

      HUO M, WANG L, WANG Y, CHEN Y, SHI J. ACS Nano, 2019, 13(2): 2643-2653.

    47. [47]

      MA B, WANG S, LIU F, ZHANG S, DUAN J, LI Z, KONG Y, SANG Y, LIU H, BU W, LI L. J. Am. Chem. Soc., 2019, 141(2): 849-857.

    48. [48]

      LIN L, WANG S, DENG H, YANG W, RAO L, TIAN R, LIU Y, YU G, ZHOU Z, SONG J, YANG H H, CHEN Z Y, CHEN X. J. Am. Chem. Soc., 2020, 142(36): 15320-15330.

    49. [49]

      MENG X, ZHANG X, LIU M, CAI B, HE N, WANG Z. Appl. Mater. Today, 2020, 21: 100864.

    50. [50]

      LI S L, JIANG P, JIANG F L, LIU Y. Adv. Funct. Mater., 2021: 2100243.

    51. [51]

      LIU Y, ZHEN W, WANG Y, LIU J, JIN L, ZHANG T, ZHANG S, ZHAO Y, SONG S, LI C, ZHU J, YANG Y, ZHANG H. Angew. Chem., Int. Ed., 2019, 58(8): 2407-2412.

    52. [52]

      TANG Z, ZHANG H, LIU Y, NI D, ZHANG H, ZHANG J, YAO Z, HE M, SHI J, BU W. Adv. Mater., 2017, 29(47): 1701683.

    53. [53]

      WANG P, LIANG C, ZHU J, YANG N, JIAO A, WANG W, SONG X, DONG X. ACS Appl. Mater. Interfaces, 2019, 11(44): 41140-41147.

    54. [54]

      LAN G, NI K, XU Z, VERONEAU S S, SONG Y, LIN W. J. Am. Chem. Soc., 2018, 140(17): 5670-5673.

    55. [55]

      OU C, ZHANG Y, GE W, ZHONG L, HUANG Y, SI W, WANG W, ZHAO Y, DONG X. Chem. Commun., 2020, 56(46): 6281-6284.

    56. [56]

      LIU C, CAO Y, CHENG Y, WANG D, XU T, SU L, ZHANG X, DONG H. Nat. Commun., 2020, 11: 1735.

    57. [57]

      ZHONG X, WANG X, CHENG L, TANG Y A, ZHAN G, GONG F, ZHANG R, HU J, LIU Z, YANG X. Adv. Funct. Mater., 2020, 30(4): 1907954.

    58. [58]

      DU J, ZHENG X, YONG Y, YU J, DONG X, ZHANG C, ZHOU R, LI B, YAN L, CHEN C, GU Z, ZHAO Y. Nanoscale, 2017, 9(24): 8229-8239.

    59. [59]

      DAI Y, YANG Z, CHENG S, WANG Z, ZHANG R, ZHU G, WANG Z, YUNG B C, TIAN R, JACOBSON O, XU C, NI Q, SONG J, SUN X, NIU G, CHEN X. Adv. Mater., 2018, 30(8): 1704877.

    60. [60]

      GAO S, JIN Y, GE K, LI Z, LIU H, DAI X, ZHANG Y, CHEN S, LIANG X, ZHANG J. Adv. Sci., 2019, 6(24): 1902137.

    61. [61]

      REN Z, SUN S, SUN R, CUI G, HONG L, RAO B, LI A, YU Z, KAN Q, MAO Z. Adv. Mater., 2020, 32(6): 1906024.

    62. [62]

      SUN P, DENG Q, KANG L, SUN Y, REN J, QU X. ACS Nano, 2020, 14(10): 13894-13904.

    63. [63]

      WANG S, WANG Z, YU G, ZHOU Z, JACOBSON O, LIU Y, MA Y, ZHANG F, CHEN Z Y, CHEN X. Adv. Sci., 2019, 6(5): 1801986.

    64. [64]

      GRAZIEWICZ M, WINK D A, LAVAL F. Carcinogenesis, 1996, 17(11): 2501-2505.

    65. [65]

      WINK D A, MITCHELL J B. Free Radical Biol. Med., 1998, 25(4): 434-456.

    66. [66]

      HU Y, LV T, MA Y, XU J, ZHANG Y, HOU Y, HUANG Z, DING Y. Nano Lett., 2019, 19(4): 2731-2738.

    67. [67]

      ZHANG L, WAN S S, LI C X, XU L, CHENG H, ZHANG X Z. Nano Lett., 2018, 18(12): 7609-7618.

    68. [68]

      DUAN H, GUO H, ZHANG R, WANG F, LIU Z, GE M, YU L, LIN H, CHEN Y. Biomaterials, 2020, 256: 120206.

    69. [69]

      GONG F, CHEN M, YANG N, DONG Z, TIAN L, HAO Y, ZHUO M, LIU Z, CHEN Q, CHENG L. Adv. Funct. Mater., 2020, 30(49): 2002753.

  • 加载中
    1. [1]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    11. [11]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    12. [12]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(0)
  • Abstract views(5129)
  • HTML views(696)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return