Citation: WANG Hai-Peng,  CHU Xiao-Li,  CHEN Pu,  LIU Dan,  LI Jing-Yan,  XU Yu-Peng. Research and Application Progress of Algorithms for Spectral Baseline Correction[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1270-1281. doi: 10.19756/j.issn.0253-3820.201679 shu

Research and Application Progress of Algorithms for Spectral Baseline Correction

  • Corresponding author: CHU Xiao-Li, cxlyuli@sina.com
  • Received Date: 15 November 2020
    Revised Date: 29 March 2021

    Fund Project: Supported by the National Key Research & Development Program of China (No.2017YFB0306501).

  • The baseline drift is common in the measurement process of Raman spectroscopy, middle infrared (MIR) spectroscopy, near infrared (NIR) spectroscopy, laser-induced breakdown spectroscopy (LIBS) and other spectral instrumentation, which will seriously deteriorate the result of subsequent qualitative and quantitative analysis of spectra. To obtain accurate and clear results, some effective baseline correction algorithms have been implemented to correct the baseline of spectra before subsequent qualitative and quantitative analysis, especially combined with chemometric methods. Baseline correction algorithms are mainly derivative method, iterative polynomial fitting, piecewise fitting, moving window smoothing, wavelet transform (WT), penalized least squares and robust baseline estimation (RBE). These algorithms can eliminate the adverse effects of baseline drift on quantitative and qualitative analysis to a large extent, but each of them has some shortcomings in certain aspects. In recent years, in response to the drawbacks of the aforementioned algorithms, some improved and novel algorithms for baseline correction have been proposed one after another. Improved algorithms are mainly adaptive minmax polynomial fitting fluorescence background subtraction algorithms, interval linear fitting based on subspace vector angle, dynamic moving Savitzky-Golay algorithms, selection method of optimum decomposition in wavelet transform based on energy distribution, adaptive iteratively reweighted penalized least squares (airPLS), etc. Novel algorithms include fluorescence photo-bleaching difference approach (FBDA), algorithms based on morphological operators, synchronous fitting algorithms of pure spectrum and baseline based on sparse representation, etc. These algorithms have not only improved the quality of spectra but also further enhanced the accuracy and robustness of subsequent quantitative and qualitative analysis based on spectra. This article systematically reviews basic algorithms, improved algorithms and novel algorithms for spectral baseline correction, as well as their application research progress, and the development prospect of algorithms for spectral baseline correction is discussed.
  • 加载中
    1. [1]

      LIU X B, ZHANG Z M, LIANG Y Z, SOUSA P F M, YUN Y H, YU L. Chemom. Intell. Lab. Syst., 2014, 139: 97-108.

    2. [2]

      GALLO C, CAPOZZI V, LASALVIA M, PERNA G. Vib. Spectrosc., 2016, 83: 132-137.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      LIEBER C A, MAHADEVAN-JANSEN A. Appl. Spectrosc., 2003, 57(11): 1363-1367.

    11. [11]

      RUCKSTUHL A F, JACOBSON M P, FIELD R W, DODD J A. J. Quant. Spectrosc. Radiat. Transfer, 2001, 68(2): 179-193.

    12. [12]

    13. [13]

      KOCH M, SUHR C, ROTH B, MEINHARDT-WOLLWEBER M. J. Raman Spectrosc., 2017, 48(2): 336-342.

    14. [14]

      LIU H, ZHANG Z L, LIU S Y, YAN L X, LIU T T, ZHANG T X. Appl. Spectrosc., 2015, 69(9): 1013-1022.

    15. [15]

      HAN Q J, XIE Q, PENG S L,GUO B K. Analyst, 2017, 142(13): 2460-2468.

    16. [16]

      LI H R, DAI J S, PAN T H, CHANG C Q, SO H C. Chemometr. Intell. Lab. Syst., 2020, 204: 104088.

    17. [17]

      KWIATKOWSKI A, GNYBA M, SMULKO J, WIERZBA P. Metrol. Meas. Syst., 2010, 17(4): 549-559.

    18. [18]

    19. [19]

      ZHAO J H, LUI H, MCLEAN D I, ZENG H S. Appl. Spectrosc., 2007, 61(11): 1225-1232.

    20. [20]

    21. [21]

    22. [22]

      BAEK S J, PARK A, KIM J Y, SHEN A G, HU J M. Chemometr. Intell. Lab. Syst., 2009, 98(1): 24-30.

    23. [23]

    24. [24]

      RENNER G, WEISS V. Comput. Aided Des., 2004, 36(4): 351-362.

    25. [25]

    26. [26]

    27. [27]

      EILERS P H C. Anal. Chem., 2003, 75(14): 3631-3636.

    28. [28]

      ZHANG F, TANG X J, TONG A X, WANG B, WANG J W. Sensors, 2020, 20(7): 2015-2026.

    29. [29]

      ZHANG F, TANG X J, TONG A X, WANG B, WANG J W, LV Y Y, TANG C R, WANG J. Spectrosc. Lett., 2020, 53(3): 222-233.

    30. [30]

      ZHANG Z M, CHEN S, LIANG Y Z. Analyst, 2010, 135(5): 1138-1146.

    31. [31]

      PENG J T, PENG S L, JIANG A, WEI J P, LI C W, TAN J. Anal. Chim. Acta, 2010, 684(1): 63-68.

    32. [32]

      LIU J C, OSADCHY M, ASHTON L, FOSTER M, SOLOMON C J, GIBSON S J. Analyst, 2017, 142(21): 4067-4074.

    33. [33]

    34. [34]

      BERTINETTO C G, VUORINEN T. Appl. Spectrosc., 2014, 68(2): 155-164.

    35. [35]

      MANSOUR H M, HICKEY A J. AAPS PharmSciTech, 2007, 8(4): 99.

    36. [36]

      GAO M, LEWIS G, TURNER G M, SOUBRET A, NTZIACHRISTOS V. Appl. Opt., 2005, 44(26): 5468-5474.

    37. [37]

      SHORT K W, CARPENTER S, FREYER J P, MOURANT J R. Biophys. J., 2005, 88(6): 4274-4288.

    38. [38]

      CAO A, PANDYA A K, SERHATKULU G K, KAST R E, DAI H B, THAKUR J S, NAIK V M, NAIK R, AUNER G, RABAH R, FREEMAN D C. J. Raman Spectrosc., 2007, 38(9): 1199-1205.

    39. [39]

    40. [40]

      HU H B, BAI J, XIA G, ZHANG W D, MA Y. Photonic Sens., 2018, 8(4): 332-340.

    41. [41]

      LIU J T, SUN J Y, HUANG X Z, LI G J, LIU B Q. Appl. Spectrosc., 2015, 69(7): 834-842.

    42. [42]

    43. [43]

    44. [44]

      WEAKLEY A T, GRIFFITHS P R, ASTON D E. Appl. Spectrosc., 2012, 66(5): 519-529.

    45. [45]

      SUN L X, YU H B. Spectrochim. Acta, Part B, 2009, 64(3): 278-287.

    46. [46]

      SUN K, SU H, YAO Z X, HUANG P X. Spectroscopy-US, 2014, 29(2): 54, 56, 58-61.

    47. [47]

    48. [48]

      GUO S X, BOCKLITZ T, POPP J. Analyst, 2016, 141(8): 2396-2404.

    49. [49]

      ROWLANDS C, ELLIOTT S. J. Raman Spectrosc., 2011, 42(3): 363-369.

    50. [50]

    51. [51]

    52. [52]

    53. [53]

      GONZALEZ-VIDAL J J, PEREZPUEYO R P, SONEIRA M J. J. Raman Spectrosc., 2017, 48(6): 878-883.

    54. [54]

      CAI Y Y, YANG C H, XU D G, GUI W H. Anal. Methods, 2018, 10(28): 3525-3533.

    55. [55]

      DE ROOI J J, EILERS P H C. Chemometr. Intell. Lab. Syst., 2012, 117: 56-60.

    56. [56]

    57. [57]

    58. [58]

    59. [59]

      PRAKASH B D, WEI Y C. Analyst, 2011, 136(15): 3130-3135.

    60. [60]

      SCHULZE H G, FOIST R B, OKUDA K, IVANOV A, TURNER R F B. Appl. Spectrosc., 2012, 66(7): 757-764.

    61. [61]

      KRISHNA H, MAJUMDER S, GUPTA P K. J. Raman Spectrosc., 2012, 43: 1884-1894.

    62. [62]

    63. [63]

      LI N, LI X Y, ZOU Z X, LIN L R, LI Y Q. Analyst, 2011, 136(13): 2802-2810.

    64. [64]

    65. [65]

      HU Y G, ZHOU J J, TANG J, XIAO S. Chromatographia, 2013, 76(11-12): 687-696.

    66. [66]

    67. [67]

      MA C X, SHAO X G. J. Chem. Inf. Comput. Sci., 2004, 44(3): 907-911.

    68. [68]

      CHEN D, SHAO X G, HU B, SU Q D. Anal. Chim. Acta, 2004, 511(1): 37-45.

    69. [69]

    70. [70]

      GALLOWAY C M, RU E C L, ETCHEGOIN P G. Appl. Spectrosc., 2009, 63(12): 1370-1376.

    71. [71]

    72. [72]

    73. [73]

      BAEK S J, PARK A, AHN Y J, CHOO J. Analyst, 2015, 140(1): 250-257.

    74. [74]

    75. [75]

      HE S X, ZHANG W, LIU L J, HUANG Y, HE J M, XIE W Y, WU P, DU C L. Anal. Methods, 2014, 6(12): 4402-4407.

    76. [76]

      YANG G F, DAI J C, LIU X J, CHEN M, WU X L. Appl. Spectrosc., 2019, 74(12): 1443-1451.

    77. [77]

      ZHANG Z M, CHEN S, LIANG Y Z. Analyst, 2010, 135(5): 1138-1146.

    78. [78]

      XU D G, LIU S, CAI Y Y, YANG C H. Appl. Opt., 2019, 58(14): 3913-3920.

    79. [79]

    80. [80]

    81. [81]

      LI Z, ZHAN D J, WANG J J, HUANG J, XU Q S, ZHANG Z M, ZHENG Y B, LIANG Y Z, WANG H. Analyst, 2013, 138(16): 4483-4492.

    82. [82]

      ZHANG Z M, CHEN S, LIANG Y Z, LIU Z X, ZHANG Q M, DING L X, YE F, ZHOU H. J. Raman Spectrosc., 2010, 41(6): 659-669.

    83. [83]

    84. [84]

    85. [85]

    86. [86]

    87. [87]

      LILAND K H, RUKKE E O, OLSEN E F, ISAKSSON T. Chemometr. Intell. Lab. Syst., 2011, 109(1): 51-56.

    88. [88]

      SELESNICK I, GRABER H L, PFEIL D S, BARBOUR R L. IEEE T. Signal Proces., 2014, 62: 1109-1124.

    89. [89]

      NING X R, SELESNICK I W, DUVAL L. Chemometr. Intell. Lab., 2014, 139: 156-167.

    90. [90]

    91. [91]

      YI C C, LV Y, XIAO H, KE K, YU X. Spectrochim. Acta, Part B, 2017, 138: 72-80.

    92. [92]

    93. [93]

      YAO J, SU H, YAO Z X. Spectrochim. Acta, Part A, 2020, 238: 118417.

    94. [94]

    95. [95]

      LIU Y J, ZHOU X G, YU Y D. Analyst, 2015, 140(23): 7984-7996.

  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    13. [13]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    19. [19]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(127)
  • Abstract views(2102)
  • HTML views(624)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return