Citation: ZHANG Jing-Shun,  ZHANG Guan-Nan,  ZHAO Liu-Yang,  WANG Xin,  ZHU Jun,  JIANG Hong,  LIU Zhan-Fang. Feature Selection of Diesel Fuel Using Pixel and Peak Table-based Analysis by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1318-1326. doi: 10.19756/j.issn.0253-3820.201624 shu

Feature Selection of Diesel Fuel Using Pixel and Peak Table-based Analysis by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry

  • Corresponding author: JIANG Hong,  LIU Zhan-Fang, 
  • Received Date: 25 October 2020
    Revised Date: 30 March 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFC0803804) and the Technical Research Plan of the Ministry of Public Security of China (No.2016JSYJB09).

  • Diesel fuel is one of ignitable liquid with complex components. Different crude oil source and production process would cause differences in its components and content. To select feature components of diesel fuel based on the regional information, 36 samples of 0# diesel fuel, collected from different refineries in China, were taken as the research objects in this work. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) was used to test diesel fuel, which could greatly reduce the co-elution of diesel fuel components. Additionally, under the experimental conditions such as direct injection and using polar-nonpolar column system, the peak capacity was calculated. The contour plots that were suitable for fingerprinting analysis were obtained, and the family distribution of diesel fuel was qualitatively analyzed. The preprocessing and chemometric methods of pixel-based F-ratio and peak table-based partial least squares-discrimination analysis (PLS-DA) were used to select the comprehensive two-dimensional gas chromatography data of diesel fuel. Finally, the results showed that C16-C20 alkanes and C7-C12 monocyclic aromatic hydrocarbons differed greatly among diesel fuel samples in different regions. By comparing the process and the results of two methods, the characteristics of the pixel-based method for processing comprehensive two-dimensional gas chromatography data matrix was introduced. The feature selection methods could be taken as a reference for processing experimental data of GC×GC-MS.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      ASTM E1618-19.Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. American Society for Testing and Materials.

    4. [4]

      TAYLOR C M, ROSENHAN A K, RAINES J M, RODRIGUEZ J M. J. Forensic Res., 2012, 3(9): 169-179.

    5. [5]

      SAMPAT A A S, VAN DAELEN B, LOPATKA M, MOL H, VAN DER WEG G, VIVÒ-TRUYOLS G, SJERPS M, SCHOENMAKERS P J, VAN ASTEN A C. Separations, 2018, 5(3): 43.

    6. [6]

      SAMPAT A A S, LOPATKA M, SJERPS M, VIVO-TRUYOLS, G, SCHOENMAKERS P J, VAN ASTEN A C. TrAC-Trends Anal. Chem., 2016, 80: 345-363.

    7. [7]

      GRUBER B, WEGGLER B A, JARAMILLO R, MURRELL K A, PIOTROWSKI P K, DORMAN F L. TrAC-Trends Anal. Chem., 2018, 105: 292-301.

    8. [8]

      JENNERWEIN M, ESCHNER M, WILHARM T, GRÖGER T, ZIMMERMANN R. Fuel, 2019, 235: 336-338.

    9. [9]

      NIZIO K D, COCHRAN J W, FORBES S L. Separations, 2016, 3(3): 26.

    10. [10]

      STAUFFER E, DOLANJ A, NEWMAN R. Fire Debris Analysis. London: Academic Press, 2008: 507.

    11. [11]

      FREYE C E, BOWDEN P R, GREENFIELD M T, TAPPAN B C. Talanta, 2020, 211: 120668.

    12. [12]

      GRÖGER T, SCHÄFFER M, PÜTZ M, AHRENS B, DREW K, ESCHNER M, ZIMMERMANN R. J. Chromatogr. A, 2008, 1200(1): 8-16.

    13. [13]

      GROGER T, WELTHAGEN W, MITSCHKE S, SCHAFFER M, ZIMMERMANN R. J. Sep. Sci., 2008, 31(19): 3366-3374.

    14. [14]

      FURBO S, HANSEN A B, SKOV T, CHRISTENSEN J H. Anal. Chem., 2014, 86(15): 7160-7170.

    15. [15]

      ABRAHAMSSON V, RISTIC N, FRANZ K, VAN GEEM K. J. Chromatogr. A, 2017, 1501: 89-98.

    16. [16]

      PARSONS B A, MARNEY L C, SIEGLER W C, HOGGARD J C, WRIGHT B W, SYNOVEC R E. Anal. Chem., 2015, 87(7): 3812-3819.

    17. [17]

      SUDOL P E, GOUGH D V, PREBIHALO S E, SYNOVEC R E. Talanta, 2020, 206: 120239.

    18. [18]

      MURRAY J A. J. Chromatogr. A, 2012, 1261: 58-68.

    19. [19]

      JOHNSON K J, SYNOVEC R E. Chemom. Intell. Lab. Syst., 2002, 60(1-2): 225-237.

    20. [20]

      ALIAKBARZADEH G, PARASTAR H, SERESHTI H. Chemom. Intell. Lab. Syst., 2016, 158: 165-173.

    21. [21]

      SCHÖNEICH S, TRINKLEIN T J, WARREN C G, SYNOVEC R E. Anal. Chim. Acta, 2020, 1134: 115-124.

    22. [22]

      KLEE M S, COCHRAN J, MERRICK M, BLUMBERG L M. J. Chromatogr. A, 2015: 1383: 151-159.

    23. [23]

      QUIROZ-MORENO C, FURLAN M F, BELINATO J R, AUGUSTOB F, ALEXANDRINOC G L, MOGOLLÓN N G S. Microchem. J., 2020: 104830.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    9. [9]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    10. [10]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    12. [12]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    13. [13]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    16. [16]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    18. [18]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    19. [19]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    20. [20]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

Metrics
  • PDF Downloads(10)
  • Abstract views(1589)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return