Citation: ZHANG Jing-Shun,  ZHANG Guan-Nan,  ZHAO Liu-Yang,  WANG Xin,  ZHU Jun,  JIANG Hong,  LIU Zhan-Fang. Feature Selection of Diesel Fuel Using Pixel and Peak Table-based Analysis by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1318-1326. doi: 10.19756/j.issn.0253-3820.201624 shu

Feature Selection of Diesel Fuel Using Pixel and Peak Table-based Analysis by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry

  • Corresponding author: JIANG Hong,  LIU Zhan-Fang, 
  • Received Date: 25 October 2020
    Revised Date: 30 March 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFC0803804) and the Technical Research Plan of the Ministry of Public Security of China (No.2016JSYJB09).

  • Diesel fuel is one of ignitable liquid with complex components. Different crude oil source and production process would cause differences in its components and content. To select feature components of diesel fuel based on the regional information, 36 samples of 0# diesel fuel, collected from different refineries in China, were taken as the research objects in this work. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) was used to test diesel fuel, which could greatly reduce the co-elution of diesel fuel components. Additionally, under the experimental conditions such as direct injection and using polar-nonpolar column system, the peak capacity was calculated. The contour plots that were suitable for fingerprinting analysis were obtained, and the family distribution of diesel fuel was qualitatively analyzed. The preprocessing and chemometric methods of pixel-based F-ratio and peak table-based partial least squares-discrimination analysis (PLS-DA) were used to select the comprehensive two-dimensional gas chromatography data of diesel fuel. Finally, the results showed that C16-C20 alkanes and C7-C12 monocyclic aromatic hydrocarbons differed greatly among diesel fuel samples in different regions. By comparing the process and the results of two methods, the characteristics of the pixel-based method for processing comprehensive two-dimensional gas chromatography data matrix was introduced. The feature selection methods could be taken as a reference for processing experimental data of GC×GC-MS.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      ASTM E1618-19.Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. American Society for Testing and Materials.

    4. [4]

      TAYLOR C M, ROSENHAN A K, RAINES J M, RODRIGUEZ J M. J. Forensic Res., 2012, 3(9): 169-179.

    5. [5]

      SAMPAT A A S, VAN DAELEN B, LOPATKA M, MOL H, VAN DER WEG G, VIVÒ-TRUYOLS G, SJERPS M, SCHOENMAKERS P J, VAN ASTEN A C. Separations, 2018, 5(3): 43.

    6. [6]

      SAMPAT A A S, LOPATKA M, SJERPS M, VIVO-TRUYOLS, G, SCHOENMAKERS P J, VAN ASTEN A C. TrAC-Trends Anal. Chem., 2016, 80: 345-363.

    7. [7]

      GRUBER B, WEGGLER B A, JARAMILLO R, MURRELL K A, PIOTROWSKI P K, DORMAN F L. TrAC-Trends Anal. Chem., 2018, 105: 292-301.

    8. [8]

      JENNERWEIN M, ESCHNER M, WILHARM T, GRÖGER T, ZIMMERMANN R. Fuel, 2019, 235: 336-338.

    9. [9]

      NIZIO K D, COCHRAN J W, FORBES S L. Separations, 2016, 3(3): 26.

    10. [10]

      STAUFFER E, DOLANJ A, NEWMAN R. Fire Debris Analysis. London: Academic Press, 2008: 507.

    11. [11]

      FREYE C E, BOWDEN P R, GREENFIELD M T, TAPPAN B C. Talanta, 2020, 211: 120668.

    12. [12]

      GRÖGER T, SCHÄFFER M, PÜTZ M, AHRENS B, DREW K, ESCHNER M, ZIMMERMANN R. J. Chromatogr. A, 2008, 1200(1): 8-16.

    13. [13]

      GROGER T, WELTHAGEN W, MITSCHKE S, SCHAFFER M, ZIMMERMANN R. J. Sep. Sci., 2008, 31(19): 3366-3374.

    14. [14]

      FURBO S, HANSEN A B, SKOV T, CHRISTENSEN J H. Anal. Chem., 2014, 86(15): 7160-7170.

    15. [15]

      ABRAHAMSSON V, RISTIC N, FRANZ K, VAN GEEM K. J. Chromatogr. A, 2017, 1501: 89-98.

    16. [16]

      PARSONS B A, MARNEY L C, SIEGLER W C, HOGGARD J C, WRIGHT B W, SYNOVEC R E. Anal. Chem., 2015, 87(7): 3812-3819.

    17. [17]

      SUDOL P E, GOUGH D V, PREBIHALO S E, SYNOVEC R E. Talanta, 2020, 206: 120239.

    18. [18]

      MURRAY J A. J. Chromatogr. A, 2012, 1261: 58-68.

    19. [19]

      JOHNSON K J, SYNOVEC R E. Chemom. Intell. Lab. Syst., 2002, 60(1-2): 225-237.

    20. [20]

      ALIAKBARZADEH G, PARASTAR H, SERESHTI H. Chemom. Intell. Lab. Syst., 2016, 158: 165-173.

    21. [21]

      SCHÖNEICH S, TRINKLEIN T J, WARREN C G, SYNOVEC R E. Anal. Chim. Acta, 2020, 1134: 115-124.

    22. [22]

      KLEE M S, COCHRAN J, MERRICK M, BLUMBERG L M. J. Chromatogr. A, 2015: 1383: 151-159.

    23. [23]

      QUIROZ-MORENO C, FURLAN M F, BELINATO J R, AUGUSTOB F, ALEXANDRINOC G L, MOGOLLÓN N G S. Microchem. J., 2020: 104830.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    16. [16]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    17. [17]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    18. [18]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    19. [19]

      Dapeng Liu Fang Wang Jingbin Zeng . Exploration on College Chemistry Teaching Focused on Cultivation of Scientific Research Ability. University Chemistry, 2024, 39(8): 126-131. doi: 10.3866/PKU.DXHX202401034

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(8)
  • Abstract views(863)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return