Citation: LI Ke-Xin,  WU Man-Li,  GAO Huan,  LIU Heng. Determination of Active Polycyclic Aromatic Hydrocarbons Degrading Bacteria Using Flow Cytometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1357-1365. doi: 10.19756/j.issn.0253-3820.201598 shu

Determination of Active Polycyclic Aromatic Hydrocarbons Degrading Bacteria Using Flow Cytometry

  • Corresponding author: WU Man-Li, 447005853@qq.com
  • Received Date: 24 December 2020
    Revised Date: 27 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.52070154, 21577109).

  • A method for determination of the number of active polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria using flow cytometry was developed. PAHs degrading bacteria suspension (1×103-1×105 cells/mL) was prepared by using ultra-pure water as dilution. After stained using SG/PI and incubated at 35 ℃ for 10 min in the dark, the number of PAHs-degrading bacteria was determined using flow cytometry. The parameters of flow cytometry were set as follows: the green (FL1) and red (FL3) fluorescent acted as detector and the threshold value was 600; the flow rate of bacteria suspension was 33 mL/min and the counting rate kept below 1000 cells/s. Experimental results showed that there was a good correlation relationship between the results of flow cytometry and the plate counting determination, and the correlation coefficients were 0.9742-0.9962. To determine PAH-active bacteria, the bacteria during the growth phase were sterilized using NaClO that acted as negative control, and the activated bacteria were used as positive control. Both negative and positive bacteria were determined using flow cytometry after stained using SYBR Green I and propidium iodide, and the active and inactive cells regions were respectively classified. Compared to the plate counting method, the flow cytometry for counting bacteria number could greatly reduce determination time and improve the accuracy. This study provided a fast and efficiency method for determination of active bacteria in pollutant degrading systems.
  • 加载中
    1. [1]

      WANG Q L, HOU J Y, YUAN J, WU Y C, LIU W X, LUO Y M, CHRISTIE P. Chemosphere, 2020, 248: 125983.

    2. [2]

      ZAFRA G, ABSALON A E, ANGEL A M, FERNANDEZ F J, CORTES-ESPINOSA D V. Chemosphere, 2017, 172: 120-126.

    3. [3]

    4. [4]

      ACHILLEOS C, BERTHIER F. Food Microbiol., 2017, 65: 149-159.

    5. [5]

    6. [6]

    7. [7]

      SPAETH S, TRAN Q, LIU Z Y, PAD J. Pharmaceut. Sci. Technol., 2018, 72(6): 574-583.

    8. [8]

      CHEN Q L, WANG H, YANG B S, HE F. Ecotoxicol. Environ. Saf., 2014, 102: 93-99.

    9. [9]

      MCGLYNN S E, CHADWICK G L, KEMPES C P, ORPHAN V J. Nature, 2015, 526(7574): 531-535.

    10. [10]

      BLAZEWICZ S J, BARNARD R L, DALY R A, FIRESTONE M K. ISME J., 2013, 7: 2061-2068.

    11. [11]

      GABRIELLI M, TUROLLA A, ANTONELLI M. J. Environ. Manage., 2021, 286: 112151.

    12. [12]

    13. [13]

      EHGARTNER D, HERWIG C, NEUTSCH L. Appl. Microbiol. Biotechnol., 2016, 100(12): 5363-5373.

    14. [14]

    15. [15]

      HAMMES F, BERGER C, KOSTER O, EGLI T. J. Water Supply: Res. Technol.-AQUA, 2010, 59(1): 31-40.

    16. [16]

      CHESWICK R, MOORE G, NOCKER A, HASSARD F, JEFFERSON B, JARVIS P. Environ. Technol. Innovation, 2020, 19: 101032.

    17. [17]

      JIA S Y, JIA R B, ZHANG K F, SUN S H, LU N N, WANG M Q, ZHAO Q H. Environ. Res., 2020, 185: 109417.

    18. [18]

      WU J, CHENG S, CAI M H, WU Y P, LI Y, WU J C, LI A M, LI W T. Water Res., 2018, 145: 354-364.

    19. [19]

      MAAIKE K R, URS V G, PIETRO F, FREDERIK H. Water Res., 2011, 45(3): 1490-1500.

    20. [20]

      HASSANSHAHIAN M, EMTIAZI G, CAPPELLO S. Mar. Pollut. Bull., 2012, 64(1): 7-12.

    21. [21]

    22. [22]

    23. [23]

      WAN Q Q, WEN G, CAO R H, XU X Q, ZHAO H, LI K, WANG J Y, HUANG T L. Water Res., 2020, 173: 115553.

    24. [24]

    25. [25]

      RABODONIRINA S, RASOLOMAMPIANINA R, KRIER F, DRIDER D, MERHABY D, NET S, OUDDANE B. J. Environ. Manage., 2019, 232: 1-7.

    26. [26]

      JIANG R H, WU X X, XIAO Y Q, KONG D K, LI Y, WANG H Q. J. Hazard. Mater., 2021, 403: 123707.

    27. [27]

    28. [28]

      WEI K, YIN H, PENG H, LIU Z H, LU G N, DANG Z. Chemosphere, 2017, 178: 80-87.

    29. [29]

      GAO J, YE J S, MA J W, TANG L T, HUANG J. J. Hazard. Mater., 2014, 276: 112-119.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(10)
  • Abstract views(1056)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return