Citation: XU Fu-Xing,  JIN Liu-Yu,  QIAN Bing-Jun,  WANG Wei-Min,  DING Chuan-Fan. Effect of Dodecapole Electric Field on Performance of Linear Ion Trap Mass Analyzer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1282-1288. doi: 10.19756/j.issn.0253-3820.201580 shu

Effect of Dodecapole Electric Field on Performance of Linear Ion Trap Mass Analyzer

  • Corresponding author: XU Fu-Xing,  DING Chuan-Fan, 
  • Received Date: 29 September 2020
    Revised Date: 1 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21803013, 21773035).

  • For the simplified linear ion traps (LITs), the use of non-hyperbolic electrodes might produce even greater proportions of higher-order field components. Different higher-order fields will have different effects on the ion trap performance. In this work, the performances of semi-circular rod electrode LITs with different dodecapole electric field components were investigated by theoretical simulations and experiments. Different amplitude dodecapole field (A6) components were added to the quadrupole field (A2) by changing the ratio between the circular electrode radii and the electric field radii. In theoretical simulation calculations and experimental research, the mass resolution gradually improved to a maximum of 1250 (full-width at half-maximum=0.14) at m/z 175 Da when A6/A2 decreased from 1.91% to 0.03%, but when A6/A2 was negative, the mass resolution was seriously degraded. The experimental results coincided with those of the theoretical calculation. The collision-induced dissociation (CID) efficiency was also affected by the amount of higher-order field A6, and as a result, when A6/A2=0.03%, the highest CID efficiency was obtained.
  • 加载中
    1. [1]

      TODD A R, BAMES L F, YOUNG K, ZLOTNICK A, JARROLD M F. Anal. Chem., 2020, 92(16): 11357-11364.

    2. [2]

      ZHU Y, HAMLOW L A, HE C C, ROY H A, CUMNNINGHAM N A, MUNSHI M, BERDEN G, OOMENS J, RODGERS M T. Int. J. Mass Spectrom., 2018, 429(SI): 18-27.

    3. [3]

      ERICKSON B K, JEDRYCHOWSKI M P, MCALISTER G C, EVERLEY R A, KUNZ R, GYGI S P. Anal. Chem., 2015, 87(2): 1241-1249.

    4. [4]

      OLEJNIK M, RADKO L, JEDZINIAK P. Rapid Commun. Mass Spectrom., 2018, 32(8): 629-634.

    5. [5]

      DOUGLAS D J, FRANK A J, MAO D. Mass Spectrom. Rev., 2005, 24(1): 1-29.

    6. [6]

    7. [7]

      WANG Y Z, HUANG Z J, JIANG Y, XIONG X C, DENG Y L, FANG X, XU W. J. Mass Spectrom., 2013, 48(8): 937-944.

    8. [8]

      VAZQUEZ T, TAYLOR C, KNOWLTON M, WILLIAMS S, EVANS-NGUYEN T. J. Am. Soc. Mass Spectrom., 2020, 31(8): 1722-1729.

    9. [9]

      XU W, CHAPPELL W J, COOKS R G, OUYANG Z. J. Mass Spectrom., 2009, 44(3): 353-360.

    10. [10]

      SYKA J E P, MARCH R E, TODD J F J. Practical Aspects of Ion Trap Mass Spectrometry, Vol.1, CRC Press, New York, USA, 1995: 169.

    11. [11]

      WU G X, COOKS R G, OUYANG Z. Int. J. Mass Spectrom., 2005, 241(2-3): 119-132.

    12. [12]

      ZHANG Z P, QUIST H, PENG Y, HANSEN B J, WANG J T, HAWKINS A R, AUSTIN D E. Int. J. Mass Spectrom., 2011, 299(2-3): 151-157.

    13. [13]

      KONENKOV N, LONDRY F, DING C F, DOUGLAS D J. J. Am. Soc. Mass Spectrom., 2006, 17(8): 1063-1073.

    14. [14]

      OUYANG Z, WU G X, SONG Y S, LI H Y, PLASS W R, COOKS R G. Anal. Chem., 2004, 76(16): 4595-4605.

    15. [15]

      JIANG D, JIANG G Y, LI X X, XU F X, WANG L, DING L, DING C F. Anal. Chem., 2013, 85(12): 6041-6046.

    16. [16]

      LI X X, JIANG G Y, LUO C, XU F X, WANG Y Y, DING L, DING C F. Anal. Chem., 2009, 81(12): 4840-4846.

    17. [17]

      WANG L, XU F X, DAI X H, FANG X, DING C F. J. Am. Soc. Mass Spectrom., 2014, 25(4): 548-555.

    18. [18]

      XIAO Y, DING Z Z, XU C S, DAI X H, FANG X, DING C F. Anal. Chem., 2014, 86(12): 5733-5739.

    19. [19]

    20. [20]

      DOUGLAS D J, KONENKOV N V. Rapid Commun. Mass Spectrom., 2014, 28(21): 2252-2258.

    21. [21]

      DANG Q K, XU F X, HUANG X H, FANG X, WANG R Z, DING C F. J. Mass Spectrom., 2015, 50(12): 1400-1408.

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    9. [9]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    14. [14]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    17. [17]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    18. [18]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    19. [19]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(8)
  • Abstract views(799)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return