Citation: MAO Ya-Ning,  WANG Jun,  GAO Yu-Huan,  ZHAO Ting-Ting,  XU Sheng-Hao,  LUO Xi-Liang. Progress in Synthesis and Sensing Imaging of Biomass-based Carbon Quantum Dots[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1076-1088. doi: 10.19756/j.issn.0253-3820.201554 shu

Progress in Synthesis and Sensing Imaging of Biomass-based Carbon Quantum Dots

  • Corresponding author: XU Sheng-Hao,  LUO Xi-Liang, 
  • Received Date: 14 September 2020
    Revised Date: 9 January 2021

    Fund Project: Supported by the National Nature Science Foundation of China (Nos. 21675093, 21505081, 21974075), the Natural Science Foundation of Shandong Province, China (No. ZR2019YQ13), the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province, China (No. 2019KJC007) and the Taishan Scholar Program of Shandong Province, China (No. ts20110829).

  • As a kind of carbon-based luminescent nanomaterials, carbon quantum dots (CQDs) have been widely used in the fields of biosensor and biological imaging because of their low toxicity, adjustable optical properties, low cost, excellent light stability and good biocompatibility. Although there are various methods to synthesize CQDs, the green synthesis method using biomass-based natural raw materials can convert low-value wastes into high-value biomass-based CQDs, which is the trend to realize the energy sustainable development in the future. In this review, we summarized the synthesis methods of biomass-based CQDs and their latest development in the field of sensing and imaging. Meanwhile, the application prospect and development direction of biomass-based CQDs in the field of sensing and imaging were also prospected.
  • 加载中
    1. [1]

      XU X Y, RAY R, GU Y L, PLOEHN H J, GEARHEART L, RAKER K, SCRIVENS W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737.

    2. [2]

      ZHAO A D, CHEN Z W, ZHAO C Q, GAO N, REN J S, QU X G. Carbon, 2015, 85: 309-327.

    3. [3]

      NIMI N, SARASWATHY A, NAZEER S S, FRANCIS N, SHENOY S J, JAYASREE R S. Biomaterials, 2018, 171: 46-56.

    4. [4]

      GORYACHEVA I Y, SAPELKIN A V, SUKHORUKOV G B. TrAC-Trends Anal. Chem., 2017, 90: 27-37.

    5. [5]

      PENG X Y, WANG R, WANG T J, YANG W N, WANG H, GU W, YE L. ACS Appl. Mater. Interfaces, 2018, 10(1): 1084-1092.

    6. [6]

      GHADAREH S H, SALIMI A, FATHI F, BAHRAMI S. Biosens. Bioelectron., 2017, 96: 308-316.

    7. [7]

      LIU M L, YANG L, LI R S, CHEN B B, LIU H, HUANG C Z, Green Chem., 2017, 19(15): 3611-3617.

    8. [8]

      ZHANG H J, ZHANG B X, DI C X, ALI M C, CHEN J, LI Z, SI J, ZHANG H, QIU H D. Nanoscale, 2018, 10(11): 5342-5349.

    9. [9]

      SAHU S, BEHERA B, MAITI T K, MOHAPATRA S. Chem. Commun., 2012, 48(70): 8835-8837.

    10. [10]

      HSU P C, SHIH Z Y, LEE C H, CHANG H T. Green. Chem., 2012, 14(4): 917-920.

    11. [11]

      LIU Y Y, JIANG L P, LI B J, FAN X Y, WANG W, LIU P, XU S H, LUO X L. J. Mater. Chem. B, 2019, 7(19): 3053-3058.

    12. [12]

      YAN Z Y, ZHANG Z W, CHEN J Q. Sens. Actuators, B, 2016, 225: 469-473.

    13. [13]

      LU W B, QIN X Y, LIU S, CHANG G H, ZHANG Y W, LUO Y L, ASIRI A M, YOUBI A O A, SUN X P. Anal. Chem., 2012, 84(12): 5351-5357.

    14. [14]

      DING H, JI Y, WEI J S, GAO Q Y, ZHOU Z Y, XIONG H M. J. Mater. Chem. B, 2017, 5(26): 5272-5277.

    15. [15]

      WU Z L, ZHANG P, GAO M X, LIU C F, WANG W, LENG F, HUANG C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873.

    16. [16]

      HU Y P, YANG J, TIAN J W, JIA L, YU J S. Carbon, 2014, 77: 775-782.

    17. [17]

      YE R Q, XIANG C S, LIN J, PENG Z W, HUANG K W, YAN Z, COOK N P, SAMUEL E L G, HWANG C C, RUAN G D, CERIOTTI G, RAJI A R O, MARTÍ A A, TOUR J M. Nat. Commun., 2013, 4: 2943.

    18. [18]

      PENG J, GAO W, GUPTA B K, LIU Z, ABURTO R R, GE L H, SONG L, ALEMANY L B, ZHAN X B, GAO G H, VITHAYATHIL A A, KAIPPARETTU B A, MARTI A A, HAYASHI T, ZHU J J, AJAYAN P M. Nano Lett., 2012, 12(2): 844-849.

    19. [19]

      SHEN J H, ZHU Y H, YANG X L, LI C Z. Chem. Commun., 2012, 48(31): 3686-3699.

    20. [20]

      BAO L, LIU C, ZHANG Z L, PANG D W. Adv. Mater., 2015, 27(10): 1663-1667.

    21. [21]

      XU Z Q, YANG L Y, FAN X Y, JIN J C, MEI J, PENG W, JIANG F L, XIAO Q, LIU Y. Carbon, 2014, 66: 351-360.

    22. [22]

      KUMARI A, KUMAR A, SAHUC S K, KUMAR S. Sens. Actuators, B, 2018, 254: 197-205.

    23. [23]

      ZHOU J G, BOOKER C, LI R Y, ZHOU X T, SHAM T K, SUN X L, DING Z F. J. Am. Chem. Soc., 2007, 129(4): 744-745.

    24. [24]

      DENG J H, LU Q J, MI N X, LI H T, LIU M, XU M C, TAN L, XIE Q J, ZHANG Y Y, YAO S Z. Chem. -Eur. J., 2014, 20(17): 4993-4999.

    25. [25]

      WANG C I, WU W C, PERIASAMY A P, CHANG H T. Green Chem., 2014, 16(5): 2509-2514.

    26. [26]

      PENG J W, ZHAO Z X, ZHENG M L, SU B Y, CHEN X M, CHEN X. Sens. Actuators, B, 2020, 304: 127383.

    27. [27]

      RYU J, SUH Y W, SUH D J, AHN D J. Carbon, 2010, 48(7): 1990-1998.

    28. [28]

      ZHANG B, LIU C Y, LIU Y. Eur. J. Inorg. Chem., 2010, 2010(28): 4411-4414.

    29. [29]

      WEI X J, LI L, LIU J L, YU L D, LI H B, CHENG F, YI X T, HE J M, LI B S. ACS Appl. Mater. Interfaces, 2019, 11(10): 9832-9840.

    30. [30]

      ZHAO S J, LAN M H, ZHU X Y, XUE H T. NG T W, MENG X M, LEE C S, WANG F, ZHANG W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054-17060.

    31. [31]

      LONG P, FENG Y Y, CAO C, LI Y, HAN J K, LI S W, PENG C, LI Z Y, FENG W. Adv. Funct. Mater., 2018, 28(37): 1800791.

    32. [32]

      LI F F, LI C G, LIU J H, LIU X M, ZHAO L, BAI T Y, YUAN Q H, KONG X G, HAN Y, SHI Z, FENG S H. Nanoscale, 2013, 5(15): 6950-6959.

    33. [33]

      LI F F, LI C G, LIU X M, CHEN Y, BAI T Y, WANG L, SHI Z, FENG S H. Chem. -Eur. J., 2012, 18(37): 11641-11646.

    34. [34]

      LARHED M, MOBERG C, HALLBERG A. Acc. Chem Res., 2002, 35(9): 717-727.

    35. [35]

      ZHU H, WANG X L, LI Y L, WANG Z J, YANG F, YANG X R. Chem. Commun., 2009, (34): 5118-5120.

    36. [36]

      LIU Q L, XU S H, NIU C X, LI M F, HE D C, LU Z L, MA L, NA N, HUANG F, JIANG H, OUYANG J. Biosens. Bioelectron., 2015, 64: 119-125.

    37. [37]

      PADRON D R, ALGARRA M, TARELHO L A C, FRADE J, FRANCO A, MIGUEL G D, JIMENEZ J, CASTELLON E R, LUQUE R. ACS Sustainable Chem. Eng., 2018, 6(6): 7200-7205.

    38. [38]

      WANG X, XU X C, YANG M, JIANG P, ZHAO J, JIANG F L, LIU Y. New J. Chem., 2019, 43(23): 8950-8957.

    39. [39]

      PAN L L, SUN S, ZHANG A D, JIANG K, ZHANG L, DONG C Q, HUANG Q, WU A G, LIN H W. Adv. Mater., 2015, 27(47): 7782-7787.

    40. [40]

      XU S H, SU Z Z, ZHANG Z, NIE Y Y, WANG J, GE G L, LUO X L. J. Mater. Chem. B, 2017, 5(44): 8748-8753.

    41. [41]

      MAO Y N, CUI S N, LI W T, FAN X J, LIU Y Y, XU S H, LUO X L. Sens. Actuators, B, 2019, 296: 126694.

    42. [42]

      SUN S, JIANG K, QIAN S H, WANG Y H, LIN H W. Anal. Chem., 2017, 89(10): 5542-5548.

    43. [43]

      ZHOU Y J, HUANG X Y, LIU C, ZHANG R L, GU X L, GUAN G J, JIANG C L, ZHANG L Y, DU S H, LIU B H, HAN M Y, ZHANG Z P. Anal. Chem., 2016, 88(12): 6105-6109.

    44. [44]

      LIU C, NING D H, ZHANG C, LIU Z J, ZHANG R L, ZHAO J, ZHAO T T, LIU B H, ZHANG Z P. ACS Appl. Mater. Interfaces, 2017, 9(22): 18897-18903.

    45. [45]

      WANG H Q, YANG L, CHU S Y, LIU B H, ZHANG Q K, ZOU L M, YU S M, JIANG C L. Anal. Chem. 2019, 91(14): 9292-9299.

    46. [46]

      ZHANG T Y, DONG S, ZHAO F F, DENG M X, FU Y Q, LÜ C L. Sens. Actuators, B, 2019, 298: 126869.

    47. [47]

      CHEN J, WEI J S, ZHANG P, NIU X Q, ZHAO W, ZHU Z Y, DING H, XIONG H M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18429-18433.

    48. [48]

      FERNANDES D, KRYSMANN M J, KELARAKIS A. Chem. Commun., 2015, 51(23): 4902-4905.

    49. [49]

      WANG C F, CHENG R JI W Q, MA K Z, LING L T, CHEN S. ACS Appl. Mater. Interfaces, 2018, 10(45): 39205-39213.

    50. [50]

      TANG M Y, REN G J, ZHU B Y, YU L Y, LIU X D, CHAI F, WU H B, WANG C G. Anal. Methods, 2019, 11(15): 2072-2081.

    51. [51]

      LI R S, LIU J H, YANG T, GAO P F, WANG J, LIU H, ZHEN S J, LI Y F, HUANG C Z. Anal. Chem., 2019, 91(17): 11185-11191.

    52. [52]

      WANG H, SUN X K, ZHANG T X, CHEN X, ZHU J Y, XU W, BAI X, DONG B, CUI H N, SONG H W. J. Mater. Chem. C, 2018, 6(1): 147-152.

    53. [53]

      CAI Q Y, LI J, GE J, ZHANG L, HU Y L, LI Z H, QU L B. Biosens. Bioelectron., 2015, 72: 31-36.

    54. [54]

      HU Y L, GENG X, ZHANG L, HUANG Z M, GE J, LI Z H. Sci. Rep., 2017, 7: 5849.

    55. [55]

      LIU H F, LI Z H, SUN Y Q, GENG X, HU Y L, MENG H M, GE J, QU L B. Sci. Rep., 2018, 8: 1086.

    56. [56]

      PAN L L, SUN S, ZHANG L, JIANG K, LIN H W. Nanoscale, 2016, 8(39): 17350-17356.

    57. [57]

      LI Y B, BAI G X, ZENG S J, HAO J H. ACS Appl. Mater. Interfaces, 2019, 11(5): 4737-4744.

    58. [58]

      SUN S, ZHANG L, JIANG K, WU A G, LIN H W. Chem. Mater., 2016, 28(23): 8659-8668.

    59. [59]

      HUA X W, BAO Y W, ZENG J, WU F G. ACS Appl. Mater. Interfaces, 2019, 11(36): 32647-32658.

    60. [60]

      LIU J J, LI D W, ZHANG K, YANG M X, SUN H C, YANG B. Small, 2018, 14(15): 1703919.

    61. [61]

      YE X X, XIANG Y H, WANG Q R, LI Z, LIU Z H. Small, 2019, 15(48): 1901673.

    62. [62]

      SUN Y Q, QIN H Y, GENG X, YANG R, QU L B, KANI A N, LI Z H. ACS Appl. Mater. Interfaces, 2020, 12(28): 31738-31744.

    63. [63]

      LIU H F, SUN Y Qi, LI Z H, YANG J, ARYEE A A, QU L B, DU D, LIN Y H. Nanoscale, 2019, 11(17): 8458-8463.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(0)
  • Abstract views(817)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return