Citation: MAO Ya-Ning,  WANG Jun,  GAO Yu-Huan,  ZHAO Ting-Ting,  XU Sheng-Hao,  LUO Xi-Liang. Progress in Synthesis and Sensing Imaging of Biomass-based Carbon Quantum Dots[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1076-1088. doi: 10.19756/j.issn.0253-3820.201554 shu

Progress in Synthesis and Sensing Imaging of Biomass-based Carbon Quantum Dots

  • Corresponding author: XU Sheng-Hao,  LUO Xi-Liang, 
  • Received Date: 14 September 2020
    Revised Date: 9 January 2021

    Fund Project: Supported by the National Nature Science Foundation of China (Nos. 21675093, 21505081, 21974075), the Natural Science Foundation of Shandong Province, China (No. ZR2019YQ13), the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province, China (No. 2019KJC007) and the Taishan Scholar Program of Shandong Province, China (No. ts20110829).

  • As a kind of carbon-based luminescent nanomaterials, carbon quantum dots (CQDs) have been widely used in the fields of biosensor and biological imaging because of their low toxicity, adjustable optical properties, low cost, excellent light stability and good biocompatibility. Although there are various methods to synthesize CQDs, the green synthesis method using biomass-based natural raw materials can convert low-value wastes into high-value biomass-based CQDs, which is the trend to realize the energy sustainable development in the future. In this review, we summarized the synthesis methods of biomass-based CQDs and their latest development in the field of sensing and imaging. Meanwhile, the application prospect and development direction of biomass-based CQDs in the field of sensing and imaging were also prospected.
  • 加载中
    1. [1]

      XU X Y, RAY R, GU Y L, PLOEHN H J, GEARHEART L, RAKER K, SCRIVENS W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737.

    2. [2]

      ZHAO A D, CHEN Z W, ZHAO C Q, GAO N, REN J S, QU X G. Carbon, 2015, 85: 309-327.

    3. [3]

      NIMI N, SARASWATHY A, NAZEER S S, FRANCIS N, SHENOY S J, JAYASREE R S. Biomaterials, 2018, 171: 46-56.

    4. [4]

      GORYACHEVA I Y, SAPELKIN A V, SUKHORUKOV G B. TrAC-Trends Anal. Chem., 2017, 90: 27-37.

    5. [5]

      PENG X Y, WANG R, WANG T J, YANG W N, WANG H, GU W, YE L. ACS Appl. Mater. Interfaces, 2018, 10(1): 1084-1092.

    6. [6]

      GHADAREH S H, SALIMI A, FATHI F, BAHRAMI S. Biosens. Bioelectron., 2017, 96: 308-316.

    7. [7]

      LIU M L, YANG L, LI R S, CHEN B B, LIU H, HUANG C Z, Green Chem., 2017, 19(15): 3611-3617.

    8. [8]

      ZHANG H J, ZHANG B X, DI C X, ALI M C, CHEN J, LI Z, SI J, ZHANG H, QIU H D. Nanoscale, 2018, 10(11): 5342-5349.

    9. [9]

      SAHU S, BEHERA B, MAITI T K, MOHAPATRA S. Chem. Commun., 2012, 48(70): 8835-8837.

    10. [10]

      HSU P C, SHIH Z Y, LEE C H, CHANG H T. Green. Chem., 2012, 14(4): 917-920.

    11. [11]

      LIU Y Y, JIANG L P, LI B J, FAN X Y, WANG W, LIU P, XU S H, LUO X L. J. Mater. Chem. B, 2019, 7(19): 3053-3058.

    12. [12]

      YAN Z Y, ZHANG Z W, CHEN J Q. Sens. Actuators, B, 2016, 225: 469-473.

    13. [13]

      LU W B, QIN X Y, LIU S, CHANG G H, ZHANG Y W, LUO Y L, ASIRI A M, YOUBI A O A, SUN X P. Anal. Chem., 2012, 84(12): 5351-5357.

    14. [14]

      DING H, JI Y, WEI J S, GAO Q Y, ZHOU Z Y, XIONG H M. J. Mater. Chem. B, 2017, 5(26): 5272-5277.

    15. [15]

      WU Z L, ZHANG P, GAO M X, LIU C F, WANG W, LENG F, HUANG C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873.

    16. [16]

      HU Y P, YANG J, TIAN J W, JIA L, YU J S. Carbon, 2014, 77: 775-782.

    17. [17]

      YE R Q, XIANG C S, LIN J, PENG Z W, HUANG K W, YAN Z, COOK N P, SAMUEL E L G, HWANG C C, RUAN G D, CERIOTTI G, RAJI A R O, MARTÍ A A, TOUR J M. Nat. Commun., 2013, 4: 2943.

    18. [18]

      PENG J, GAO W, GUPTA B K, LIU Z, ABURTO R R, GE L H, SONG L, ALEMANY L B, ZHAN X B, GAO G H, VITHAYATHIL A A, KAIPPARETTU B A, MARTI A A, HAYASHI T, ZHU J J, AJAYAN P M. Nano Lett., 2012, 12(2): 844-849.

    19. [19]

      SHEN J H, ZHU Y H, YANG X L, LI C Z. Chem. Commun., 2012, 48(31): 3686-3699.

    20. [20]

      BAO L, LIU C, ZHANG Z L, PANG D W. Adv. Mater., 2015, 27(10): 1663-1667.

    21. [21]

      XU Z Q, YANG L Y, FAN X Y, JIN J C, MEI J, PENG W, JIANG F L, XIAO Q, LIU Y. Carbon, 2014, 66: 351-360.

    22. [22]

      KUMARI A, KUMAR A, SAHUC S K, KUMAR S. Sens. Actuators, B, 2018, 254: 197-205.

    23. [23]

      ZHOU J G, BOOKER C, LI R Y, ZHOU X T, SHAM T K, SUN X L, DING Z F. J. Am. Chem. Soc., 2007, 129(4): 744-745.

    24. [24]

      DENG J H, LU Q J, MI N X, LI H T, LIU M, XU M C, TAN L, XIE Q J, ZHANG Y Y, YAO S Z. Chem. -Eur. J., 2014, 20(17): 4993-4999.

    25. [25]

      WANG C I, WU W C, PERIASAMY A P, CHANG H T. Green Chem., 2014, 16(5): 2509-2514.

    26. [26]

      PENG J W, ZHAO Z X, ZHENG M L, SU B Y, CHEN X M, CHEN X. Sens. Actuators, B, 2020, 304: 127383.

    27. [27]

      RYU J, SUH Y W, SUH D J, AHN D J. Carbon, 2010, 48(7): 1990-1998.

    28. [28]

      ZHANG B, LIU C Y, LIU Y. Eur. J. Inorg. Chem., 2010, 2010(28): 4411-4414.

    29. [29]

      WEI X J, LI L, LIU J L, YU L D, LI H B, CHENG F, YI X T, HE J M, LI B S. ACS Appl. Mater. Interfaces, 2019, 11(10): 9832-9840.

    30. [30]

      ZHAO S J, LAN M H, ZHU X Y, XUE H T. NG T W, MENG X M, LEE C S, WANG F, ZHANG W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054-17060.

    31. [31]

      LONG P, FENG Y Y, CAO C, LI Y, HAN J K, LI S W, PENG C, LI Z Y, FENG W. Adv. Funct. Mater., 2018, 28(37): 1800791.

    32. [32]

      LI F F, LI C G, LIU J H, LIU X M, ZHAO L, BAI T Y, YUAN Q H, KONG X G, HAN Y, SHI Z, FENG S H. Nanoscale, 2013, 5(15): 6950-6959.

    33. [33]

      LI F F, LI C G, LIU X M, CHEN Y, BAI T Y, WANG L, SHI Z, FENG S H. Chem. -Eur. J., 2012, 18(37): 11641-11646.

    34. [34]

      LARHED M, MOBERG C, HALLBERG A. Acc. Chem Res., 2002, 35(9): 717-727.

    35. [35]

      ZHU H, WANG X L, LI Y L, WANG Z J, YANG F, YANG X R. Chem. Commun., 2009, (34): 5118-5120.

    36. [36]

      LIU Q L, XU S H, NIU C X, LI M F, HE D C, LU Z L, MA L, NA N, HUANG F, JIANG H, OUYANG J. Biosens. Bioelectron., 2015, 64: 119-125.

    37. [37]

      PADRON D R, ALGARRA M, TARELHO L A C, FRADE J, FRANCO A, MIGUEL G D, JIMENEZ J, CASTELLON E R, LUQUE R. ACS Sustainable Chem. Eng., 2018, 6(6): 7200-7205.

    38. [38]

      WANG X, XU X C, YANG M, JIANG P, ZHAO J, JIANG F L, LIU Y. New J. Chem., 2019, 43(23): 8950-8957.

    39. [39]

      PAN L L, SUN S, ZHANG A D, JIANG K, ZHANG L, DONG C Q, HUANG Q, WU A G, LIN H W. Adv. Mater., 2015, 27(47): 7782-7787.

    40. [40]

      XU S H, SU Z Z, ZHANG Z, NIE Y Y, WANG J, GE G L, LUO X L. J. Mater. Chem. B, 2017, 5(44): 8748-8753.

    41. [41]

      MAO Y N, CUI S N, LI W T, FAN X J, LIU Y Y, XU S H, LUO X L. Sens. Actuators, B, 2019, 296: 126694.

    42. [42]

      SUN S, JIANG K, QIAN S H, WANG Y H, LIN H W. Anal. Chem., 2017, 89(10): 5542-5548.

    43. [43]

      ZHOU Y J, HUANG X Y, LIU C, ZHANG R L, GU X L, GUAN G J, JIANG C L, ZHANG L Y, DU S H, LIU B H, HAN M Y, ZHANG Z P. Anal. Chem., 2016, 88(12): 6105-6109.

    44. [44]

      LIU C, NING D H, ZHANG C, LIU Z J, ZHANG R L, ZHAO J, ZHAO T T, LIU B H, ZHANG Z P. ACS Appl. Mater. Interfaces, 2017, 9(22): 18897-18903.

    45. [45]

      WANG H Q, YANG L, CHU S Y, LIU B H, ZHANG Q K, ZOU L M, YU S M, JIANG C L. Anal. Chem. 2019, 91(14): 9292-9299.

    46. [46]

      ZHANG T Y, DONG S, ZHAO F F, DENG M X, FU Y Q, LÜ C L. Sens. Actuators, B, 2019, 298: 126869.

    47. [47]

      CHEN J, WEI J S, ZHANG P, NIU X Q, ZHAO W, ZHU Z Y, DING H, XIONG H M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18429-18433.

    48. [48]

      FERNANDES D, KRYSMANN M J, KELARAKIS A. Chem. Commun., 2015, 51(23): 4902-4905.

    49. [49]

      WANG C F, CHENG R JI W Q, MA K Z, LING L T, CHEN S. ACS Appl. Mater. Interfaces, 2018, 10(45): 39205-39213.

    50. [50]

      TANG M Y, REN G J, ZHU B Y, YU L Y, LIU X D, CHAI F, WU H B, WANG C G. Anal. Methods, 2019, 11(15): 2072-2081.

    51. [51]

      LI R S, LIU J H, YANG T, GAO P F, WANG J, LIU H, ZHEN S J, LI Y F, HUANG C Z. Anal. Chem., 2019, 91(17): 11185-11191.

    52. [52]

      WANG H, SUN X K, ZHANG T X, CHEN X, ZHU J Y, XU W, BAI X, DONG B, CUI H N, SONG H W. J. Mater. Chem. C, 2018, 6(1): 147-152.

    53. [53]

      CAI Q Y, LI J, GE J, ZHANG L, HU Y L, LI Z H, QU L B. Biosens. Bioelectron., 2015, 72: 31-36.

    54. [54]

      HU Y L, GENG X, ZHANG L, HUANG Z M, GE J, LI Z H. Sci. Rep., 2017, 7: 5849.

    55. [55]

      LIU H F, LI Z H, SUN Y Q, GENG X, HU Y L, MENG H M, GE J, QU L B. Sci. Rep., 2018, 8: 1086.

    56. [56]

      PAN L L, SUN S, ZHANG L, JIANG K, LIN H W. Nanoscale, 2016, 8(39): 17350-17356.

    57. [57]

      LI Y B, BAI G X, ZENG S J, HAO J H. ACS Appl. Mater. Interfaces, 2019, 11(5): 4737-4744.

    58. [58]

      SUN S, ZHANG L, JIANG K, WU A G, LIN H W. Chem. Mater., 2016, 28(23): 8659-8668.

    59. [59]

      HUA X W, BAO Y W, ZENG J, WU F G. ACS Appl. Mater. Interfaces, 2019, 11(36): 32647-32658.

    60. [60]

      LIU J J, LI D W, ZHANG K, YANG M X, SUN H C, YANG B. Small, 2018, 14(15): 1703919.

    61. [61]

      YE X X, XIANG Y H, WANG Q R, LI Z, LIU Z H. Small, 2019, 15(48): 1901673.

    62. [62]

      SUN Y Q, QIN H Y, GENG X, YANG R, QU L B, KANI A N, LI Z H. ACS Appl. Mater. Interfaces, 2020, 12(28): 31738-31744.

    63. [63]

      LIU H F, SUN Y Qi, LI Z H, YANG J, ARYEE A A, QU L B, DU D, LIN Y H. Nanoscale, 2019, 11(17): 8458-8463.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    5. [5]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    6. [6]

      Yihan XueXue HanJie ZhangXiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    20. [20]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

Metrics
  • PDF Downloads(0)
  • Abstract views(1018)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return