Citation: GU Jun-Jie,  HU Man,  ZHANG Yi-Ning,  QU Wei-Dong,  ZHOU Ying. Ultra-High Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry for Simultaneous Determination of Organophosphate Triesters and Diesters in Serum for Human Biomonitoring Study[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1384-1392. doi: 10.19756/j.issn.0253-3820.201541 shu

Ultra-High Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry for Simultaneous Determination of Organophosphate Triesters and Diesters in Serum for Human Biomonitoring Study

  • Corresponding author: ZHOU Ying, yingchou@fudan.edu.cn
  • Received Date: 7 September 2020
    Revised Date: 19 May 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFC1600500) and the National Natural Science Foundation of China (No.81373089).

  • A method for rapid and simultaneous determination of organophosphate triesters (triphenyl phosphate (TPHP), triethyl phosphate (TEP), tri-n-butylphosphate (TnBP), tri(2-chloroethyl) phosphate (TCEP)) and diesters (diethyl phosphate (DEP) and diphenyl phosphate (DPHP)) in human serum by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) was developed. Serum sample (400 μL) was extracted using 1.2 mL of ethyl acetate with 60 μL of formic acid, followed by concentrating the extracts with freeze vacuum centrifugation technology. The sample was separated on a Phenomenex Kinetex 2.6 μm F5 LC column with formic acid aqueous solution and methanol as the mobile phase, and then detected in turn under electrospray ionization (ESI) positive and negative ion multiple reactive monitoring (MRM) mode. Stable isotope-labeled internal standards were used to improve the assay performance of UPLC-MS/MS. The analytical parameters involving sample pretreatment, chromatographic separation and mass determination were optimized. Under the optimal conditions, low limits of detection (0.002-0.01 ng/mL), wide linearity (0.05-50 ng/mL) and good recovery (56.1%-112.2%) were achieved. The intra-day and inter-day precisions were expressed as variation coefficients within 15%. The proposed method was successfully applied to the determination of six target compounds in 30 serum specimens collected from residents living in Shanghai city. This method provided a reliable alternative for large-scale monitoring trace level of organophosphate triesters and diesters in human exposure measurement and risk assessment.
  • 加载中
    1. [1]

      VAN DER VEEN I, DE BOER J. Chemosphere, 2012, 88(10): 1119-1153.

    2. [2]

      DU J, LI H X, XU S D, ZHOU Q W, JIN M Q, TANG J H. Environ. Sci. Pollut. Res. Int., 2019, 26(22): 22126-22136.

    3. [3]

    4. [4]

      CASTRO-JIMÉNEZ J, SEMPÉRÉ R. Sci. Total Environ., 2018, 642: 383-393.

    5. [5]

      PERSSON J, WANG T, HAGBERG J. Sci. Total Environ., 2018, 628-629: 159-168.

    6. [6]

      KIM U J, WANG Y, LI W, KANNAN K. Environ. Int., 2019, 125: 342-349.

    7. [7]

      YADAV I C, DEVI N L, ZHONG G, LI J, ZHANG G, COVACI A. Environ. Pollut., 2017, 229: 668-678.

    8. [8]

      HE C, WANG X Y, THAI P, BADUEL C, GALLEN C, BANKS A, BAINTON P, ENGLISH K, MUELLER J F. Environ. Pollut., 2018, 235: 670-679.

    9. [9]

      ZENG Y, DING N, WANG T, TIAN M, FAN Y, WANG T, CHEN S J, MAI B X. J. Hazard. Mater., 2020, 385: 121583.

    10. [10]

      FROMME H, LAHRZ T, KRAFT M, FEMBACHER L, MACH C, DIETRICH S, BURKARDT R, VÖLKEL W, GÖEN T. Environ. Int., 2014, 71: 158-163.

    11. [11]

      ALI N, EQANI S A M A S, ISMAIL I M I, MALARVANNAN G, KADI M W, ALBAR H M S, REHAN M, COVACI A. Sci. Total Environ., 2016, 569-570: 269-277.

    12. [12]

      ARAKI A, SAITO I, KANAZAWA A, MORIMOTO K, NAKAYAMA K, SHIBATA E, TANAKA M, TAKIGAWA T, YOSHIMURA T, CHIKARA H, SAIJO Y, KISHI R. Indoor Air., 2014, 24(1): 3-15.

    13. [13]

      ZENG X Y, WU Y, LIU Z Y, GAO S T, YU Z Q. Environ. Toxicol. Chem., 2018, 37(2): 345-352.

    14. [14]

      LI W H, SHI Y L, GAO L H, WU C D, LIU J M, CAI Y Q. Environ. Pollut., 2018, 241: 566-575.

    15. [15]

      LIU X P, XIONG L L, LI D K, CHEN C J, CAO Q. Environ. Monit. Assess., 2019, 191(2): 119.

    16. [16]

      KIM U J, KANNAN K. Environ. Sci. Technol., 2018, 52(10): 5625-5633.

    17. [17]

      SHI Y L, GAO L H, LI W H, WANG Y A, LIU J M, CAI Y Q. Environ. Pollut., 2016, 209: 1-10.

    18. [18]

      WANG R M, TANG J H, XIE Z Y, MI W Y, CHEN Y J, WOLSCHKE H, TIAN C G, PAN X H, LUO Y M, EBINGHAUS R. Environ. Pollut., 2015, 198: 172-178.

    19. [19]

      WANG Y, KANNAN P, HALDEN R U, KANNAN K. Sci. Total Environ., 2019, 655: 446-453.

    20. [20]

      KIM U J, OH J K, KANNAN K. Environ. Sci. Technol., 2017, 51(14): 7872-7880.

    21. [21]

      HE J H, LI J F, MA L Y, WU N, ZHANG Y, NIU Z. Sci. Total Environ., 2019, 697: 133997.

    22. [22]

      YADAV I C, DEVI N L, LI J, ZHANG G. Chemosphere, 2018, 190: 114-123.

    23. [23]

      LI J H, ZHAO L M, LETCHER R J, ZHANG Y J, JIAN K, ZHANG J H, SU G Y. Environ. Int., 2019, 127: 35-51.

    24. [24]

      ZHAO L M, JIAN K, SU H J, ZHANG Y Y, LI J H, LETCHER R J, SU G Y. Environ. Int., 2019, 128: 343-352.

    25. [25]

      WEI G L, LI D Q, ZHUO M N, LIAO Y S, XIE Z Y, GUO T L, LI J J, ZHANG S Y, LIANG Z Q. Environ. Pollut., 2015, 196: 29-46.

    26. [26]

      YANG J W, ZHAO Y Y, LI M H, DU M J, LI X X, LI Y. Int. J. Mol. Sci., 2019, 20(12): 2874.

    27. [27]

      HOU R, XU Y P, WANG Z J. Chemosphere, 2016, 153: 78-90.

    28. [28]

      TAN H L, YANG L, YU Y J, GUAN Q X, LIU X T, LI L Z, CHEN D. Environ. Sci. Technol., 2019, 53(9): 4784-4793.

    29. [29]

      PERCY Z, VUONG A M, OSPINA M, CALAFAT A M, LA GUARDIA M J, XU Y, HALE R C, DIETRICH K N, XIE C, LANPHEAR B P, BRAUN J M, CECIL K M, YOLTON K, CHEN A. Environ. Res., 2020, 184: 109255.

    30. [30]

      HOFFMAN K, DANIELS J L, STAPLETON H M. Environ. Int., 2014, 63: 169-172.

    31. [31]

      WANG Y, LI W, MARTÍNEZ-MORAL M P, SUN H, KANNAN K. Environ. Int., 2019, 122: 213-221.

    32. [32]

      VAN DEN EEDE N, MAHO W, ERRATICO C, NEELS H, COVACI A. Toxicol. Lett., 2013, 223(1): 9-15.

    33. [33]

      HOU M M, SHI Y L, JIN Q, CAI Y Q. Environ. Int., 2020, 139: 105698.

    34. [34]

      LI Y, LI D, CHEN J Q, ZHANG S H, FU Y R, WANG N, LIU Y H, ZHANG B. Environ. Sci. Pollut. Res. Int., 2020, 27(19): 24059-24069.

    35. [35]

      YA M L, YU N Y, ZHANG Y Y, SU H J, TANG S, SU G Y. Environ. Int., 2019, 131: 105056.

    36. [36]

      ZHAO F R, WAN Y, ZHAO H Q, HU W X, MU D, WEBSTER T F, HU J Y. Environ. Sci. Technol., 2016, 50(16): 8896-8903.

    37. [37]

      Guideline on Bioanalytical Method Validation, Emea/Chmp/Ewp/192217/2009.

    38. [38]

    39. [39]

      SU G Y, LETCHER R J, YU H X. J. Chromatogr. A, 2015, 1426: 154-160.

    40. [40]

      VAN DEN EEDE N, NEELS H, JORENS P G, COVACI A. J. Chromatogr. A, 2013, 1303: 48-53.

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(18)
  • Abstract views(830)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return