Citation: CHEN Peng,  LI Rong,  CHEN Bin. Adsorption of Ferric Ion on Multidentate Ligand Functionalized Silica Gel[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 300-309. doi: 10.19756/j.issn.0253-3820.201492 shu

Adsorption of Ferric Ion on Multidentate Ligand Functionalized Silica Gel

  • Corresponding author: LI Rong,  CHEN Bin, 
  • Received Date: 14 August 2020
    Revised Date: 24 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21376191), the Natural Science Foundation of Shaanxi Province, China (No.2011JM2013), the Service Local Special Project of Shaanxi Province Education Department (No.14JF027) and the Industrialization Cultivation Item of Shaanxi Province Educational Department (No.2013jc23)

  • The self-made silica gels functionalized with various multidentate ligands were used as adsorbents to explore the effects of ligand dentate numbers on the adsorption of common heavy metal ions in wastewater. Silica gel modified with pentadentate ligand iminodisuccinic acid displayed the highest adsorption capacity of 14.4 mg/g for Fe3+. The adsorption kinetics and thermodynamics of this adsorbent were studied, and the influences of concentration of Fe3+, temperature, rotation speed and coexisting ions on the adsorption were investigated. The experiment results showed that the adsorbent had a relatively fast initial adsorption behavior for Fe3+, and the pseudo-second-order model could better describe the adsorption kinetics of the adsorbent. Freundlich isotherm model was more suitable for describing equilibrium data, and the adsorption process was exothermic and non-spontaneous. Increasing the concentration and temperature could improve the adsorption capacity of Fe3+ on IDS-Silica, while increasing speed could shorten time to reach adsorption equilibrium. Other interfering ions had no effects on adsorption of Fe3+ except for Cu2+. Furthermore, IDS-Silica had good repeatability for adsorption of Fe3+. This work provided a new and efficient adsorption material for removing Fe3+ in wastewater, and also provided a theoretical reference for developing chelating adsorption material modified with pentadentate ligand iminodisuccinic acid.
  • 加载中
    1. [1]

      KIRAN M G, PAKSHIRAJAN K, DAS G. J. Hazard. Mater., 2017, 324: 62-70.

    2. [2]

      UDDIN M K. Chem. Eng. J., 2017, 308: 438-462.

    3. [3]

      SUI D P, CHEN H X, LI D W. J. Sol-Gel Sci. Technol., 2016, 80(2): 504-513.

    4. [4]

    5. [5]

      IBE F C, OPARA A I, IBE B O, AMAOBI C E. Environ. Monit. Assess., 2019, 191(12): 753.

    6. [6]

      WANG L P, CHEN Y J. J. Environ. Eng., 2019, 145(1): 04018130.

    7. [7]

      DABROWSKI A, HUBICKI Z, PODKOSCIELNY P, ROBENS E. Chemosphere, 2004, 56(2): 91-106.

    8. [8]

      OWENS G S, SOUTHARD G E, HOUTEN K A V, MURRARY G M. Sep. Sci. Technol., 2005, 40(11): 2205-2211.

    9. [9]

      MAR C C, FAN Y, LI F L, HU G R. Int. J. Phytorem., 2016, 18(12): 1195-1201.

    10. [10]

      ANDERSEN W C, BRUNO T J. Anal. Chim. Acta, 2003, 485(1): 1-8.

    11. [11]

      ELLIS D, BOUCHARD C, LANTAGNE G. Desalination, 2000, 130(3): 255-264.

    12. [12]

      VIEIRA E G, SOARES I V, FILHO N L D, SILVA N C D, BASTOS A C, GARCIA E F, FERREIRA T T, FRACETO L F, ROSA A H. J. Hazard. Mater., 2012, 237-238: 215-222.

    13. [13]

      FAN H T, SUN T. Korean J. Chem. Eng., 2012, 29(6): 798-803.

    14. [14]

      WU Q, DUAN G Q, CUI Y R, SUN J H. Environ. Sci. Pollut. Res., 2015, 22(2): 1144-1150.

    15. [15]

      KOLODYNSKA D. Environ. Sci. Pollut. Res., 2013, 20(9): 5939-5949.

    16. [16]

      KOLODYNSKA D, HUBICKI Z, KUBICA B. Sep. Sci. Technol., 2012, 47(9): 1361-1368.

    17. [17]

      KOLODYNSKA D. Chem. Eng. J., 2012, 179: 33-43.

    18. [18]

      LI Y L, HE J Y, ZHANG K S, LIU T, CHEN X F, WANG C M, HUANG X J, KONG L T, LIU J H. RSC Adv., 2019, 9(1): 397-407.

    19. [19]

      TROJER L, STECHER G, FEUERSTEIN I, BONM G K. Rapid Commun. Mass Spectrom., 2005, 19(22): 3398-3404.

    20. [20]

      YUCHI A, SATO T, MORIMOTO Y, MIZUNO H, WADA H. Anal. Chem., 1997, 69(15): 2941-2944.

    21. [21]

      LI L J, LIU F Q, JING X S, LING P P, LI A. Water Res., 2011, 45(3): 1177-1188.

    22. [22]

      AN F Q, WU R Y, LI M, HU T P, GAO J F, YUAN Z G. React. Funct. Polym., 2017, 118: 42-50.

    23. [23]

      EI-BAHY S M, EI-BAHY Z M. Korean J. Chem. Eng., 2016, 33(8): 2492-2501.

    24. [24]

      LI R, CHEN P, ZHANG N, CHEN B. Anal. Methods, 2019, 11(34): 4341-4347.

    25. [25]

    26. [26]

      ZHANG N, CHEN B, LI R, LI C, FAN A, HUANG F. Sep. Purif. Technol., 2019, 214: 181-186.

    27. [27]

      QU R J, SUN C M, MA F, ZHANG Y, JI C N, YIN P. Fuel, 2018, 219: 205-213.

    28. [28]

      DARRACQ G, BARON J, JOYEUX M. J. Water Process. Eng., 2014, 3: 123-131.

    29. [29]

      CHEUNG C W, PORTER J F, MCKAY G. Sep. Purif. Technol., 2000, 19(1-2): 55-64.

    30. [30]

      OZDEMIR C S, ONAL Y. Desalination, 2010, 251(1-3): 146-152.

    31. [31]

      VASILIU S, BUNIA I, RACOVITA S, NEAGU V.Carbohydr. Polym., 2011, 85(2): 376-387.

    32. [32]

      GUNAY A, ARSLANKAYA E, TOSUN I. J. Hazard. Mater., 2007, 146(1-2): 362-371.

    33. [33]

      OZCAN A, OZCAN A S. J. Hazard. Mater., 2005, 125(1-3): 252-259.

    34. [34]

      LI R, TIAN X N, ASHRAF I, CHEN B. J. Chromatogr. A, 2019, 1613(22): 460697.

    35. [35]

      PIROK B W J, MOLENAAR S R A, OUTERSTERP R E V, SCHOENMAKERS P J. J.Chromatogr. A, 2017, 1530: 104-111.

    36. [36]

      RUNTTI H, TUOMIKOSKI S, KANGAS T, LASSI U, KUOKKANEN T, RAMO J. J. Water Process. Eng., 2014, 4: 12-24.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    18. [18]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

Metrics
  • PDF Downloads(11)
  • Abstract views(912)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return