Citation:
LI Hui, YING Ying, CAO Zhen, LIU Guang-Yang, WANG Jing. Research Progress on Rapid Detection Technology Based on Smartphone and Lateral Flow Immunoassay[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(1): 1-11.
doi:
10.19756/j.issn.0253-3820.201488
-
Lateral flow immunochromatographic strip is one of the mainstream rapid detection products in the current market. Smartphones with built-in high-definition cameras have been popular among consumers in recent years. By taking a picture via mobile phones, then analyzing with machine vision image recognition technology, the optical signal of strip developed color could be converted into digital signal based on visible light colorimetric analysis or fluorescence analysis technology. This has become a research hotspot of rapid detection to realize qualitative or quantitative determination based on strip color development in recent years. In this paper, the applications of rapid detection technology based on smartphone and lateral flow immunoassay in medical diagnosis, environmental monitoring and food safety were reviewed. Moreover, the quantitative detection mode, implementation method and challenges of rapid test strip products based on smartphone photography were also discussed and summarized, which could provide reference for its realization of multi-target analysis, on-site rapid qualitative and quantitative detection.
-
-
-
[1]
-
[2]
KOCZULA K M, GALLOTTA A. Essays Biochem., 2016, 60(1):111-120.
-
[3]
LIU F M, ZHANG H L, WU Z H, DONG H D, ZHOU L, YANG D W, GE Y Q, JIA C P, LIU H Y, JIN Q H, ZHAO J L, ZHANG Q Q, MAO H J. Talanta, 2016, 161:205-210.
-
[4]
WEN T, HUANG C, SHI F J, ZENG X Y, LU T, DING S N, JIAO Y J. Analyst, 2020, 145:5345.
-
[5]
HUA X D, QIAN G L, YANG J F, HU B S, FAN J Q, QIN N, LI G, WANG Y Y, LIU F Q. Biosens. Bioelectron., 2010, 26:189-194.
-
[6]
XING C R, LIU L Q, SONG S S, FENG M, KUANG H, XU C L. Biosens. Bioelectron., 2015, 66:445-453.
-
[7]
NARDO F D, BAGGIANI C, GIOVANNOLI C, SPANO G, ANFOSSI L. Microchim Acta, 2017, 184:1295-1304.
-
[8]
WU W D, LI M, CHEN M, LI L P, WANG R, CHEN H L, CHEN F Y, MI Q, LIANG W W, CHEN H Z. Biosens. Bioelectron., 2017, 91:66-69.
-
[9]
REZAZADEH M, SEIDI S, LID M, BJERGAARD S P, YAMINI Y. TRAC-Trends Anal. Chem., 2019, 118:548-555.
-
[10]
RODA A, MICHELINI E, ZANGHERI M, FUSCO M D, CALABRIA D, SIMONI P. TRAC-Trends Anal. Chem., 2016, 79:317-325.
-
[11]
CHANG Y C, GE X X, WANG L J, LEE S S, PAULSEN M H, KHAN Q M, KHALID Z M, BHALLI J A, WAHEED U, SIMPSON C D, DU D, LI L, LIN Y H. Sens. Actuators, B, 2018, 275:300-305.
-
[12]
LI F Y, ZHENG Y, WU J, ZHAO L, SHUI L L, PU Q S, LIU S R. Talanta, 2019, 203:83-89.
-
[13]
CHOODUM A, KANATHARANA P, WONGNIRAMAIKUL W, DAEID N N. Talanta, 2013, 115:143-149.
-
[14]
SUMRIDDETCHKAJORN S, CHAITAVON K, INTARAVANNE Y. Sens. Actuators, B, 2014, 191:561-566.
-
[15]
ZEINHOM M M A, WANG Y J, SHENG L N, DU D, LI L, ZHU M J, LIN Y H. Sens. Actuators, B, 2018, 261:75-82.
-
[16]
CHEN Y, FU Q Q, LI D G, XIE J, KE D X, SONG Q F, TANG Y, WANG H. Anal. Bioanal. Chem., 2017, 409:6567-6574.
-
[17]
LI Z M, LI Z H, ZHAO D Y, WEN F, JIANG J D, XU D K. Biosens. Bioelectron., 2017, 87:874-880.
-
[18]
ROSS G M S, BREMER M G E G, NIELEN M W F. Anal. Bioanal. Chem., 2018, 410(22):5353-5371.
-
[19]
DUTTA S. TRAC-Trends Anal. Chem., 2019, 110:393-400.
-
[20]
-
[21]
NGOM B, GUO Y C, WANG X L, BI D R. Anal. Bioanal. Chem., 2010, 397:1113-1135.
-
[22]
POSTHUMA-TRUMPIE G A, KORF J, AMERONGEN A V. Anal. Bioanal. Chem., 2009, 393:569-582.
-
[23]
XU H, XIA A Y, LUO J, GAO M X, LIAO R K, LI F K, ZHONG Q, ZHANG W Q, WANG Y, CUI J H,FU W L, CHANG K, GAN M Z, JIANG W B, CHEN M. Sens. Actuators, B, 2020, 308:127750.
-
[24]
PREECHAKASEDKIT P, OSADA K, KATAYAMA Y, RUECHA N, SUZUKI K, CHAILAPAKUL O, CITTERIO D. Analyst, 2018, 143:564.
-
[25]
HOU Y F, WANG K, XIAO K, QIN W J, LU W T, TAO W, CUI D X. Nanoscale Res. Lett., 2017, 12:291.
-
[26]
LIU J T, FAN Y, KONG Z, WANG Y, LUO J P, XU S W, JIN H Y, CAI X X. Sens. Actuators, B, 2018, 259:1073-1081.
-
[27]
YOU M L, LIN M, GONG Y, WANG S R, LI A, JI L Y, ZHAO H X, LING K, WEN T, HUANG Y, GAO D F, MA Q, WANG T Z, MA A Q, LI X L, XU F. ACS Nano, 2017, 11:6261-6270.
-
[28]
RONG Z, BAI Z K, LI J N, TANG H, SHEN T Y, WANG Q, WANG C W, XIAO R, WANG S Q. Biosens. Bioelectron., 2019, 145:111719.
-
[29]
MAHMOUD M, RUPPERT C, RENTSCHLER S, LAUFER S, DEIGNERABDE H P. Sens. Actuators, B, 2021, 333:129246.
-
[30]
CHOI S, KIM S, YANG J S, LEE J H, JOO C, JUNG H I. Sens. Biosensing Res., 2018, 2:8-11.
-
[31]
ZANGHERI M, CEVENINI L, ANFOSSI L, BAGGIANI C, SIMONI P, NARDO F D, RODA A. Biosens. Bioelectron., 2015, 64:63-68.
-
[32]
WANG J, JIANG C, JIN J, JIN J N, YU W B, SU B, HU J. Angew Chem., Int. Edit., 2021, 60(23):13042-13049.
-
[33]
RONG Z, WANG Q, SUN N X, JIA X F, WANG K L, XIAO R, WANG S Q. Anal. Chim. Acta, 2019, 1055:140-147.
-
[34]
JIANG H Q, WU D, SONG L W, YUAN Q, GE S X, MIN X P, XIA N S, QIAN S Z, QIU X B. SLAS Technol., 2017, 22(2):122-129.
-
[35]
SONG L W, WANG Y B, FANG L L, WU Y, YANG L, CHEN J Y, GE S X, ZHANG J, XIONG Y Z,DENG X M, MIN X P, ZHANG J, CHEN P J, YUAN Q, XIA N S. Anal. Chem., 2015, 87:5173-5180.
-
[36]
YEO S J, CHOI K, CUC B T, HONG N N, BAO D T, NGOC N M, LE M Q, HANG N L K, THACH N C, MALLIK S K, KIM H S, CHONG C K, CHOI H S, SUNG H W, YU K, PARK H. Theranostics, 2016, 6(2):231-242.
-
[37]
RODA A, CAVALERA S, NARDO F D, CALABRIA D, ROSATI S, SIMONI P, COLITTI B, BAGGIANI C, RODA M, ANFOSSI L. Biosens. Bioelectron., 2021, 172:112765.
-
[38]
RUPPERT C, PHOGAT N, LAUFER S, KOHL M, DEIGNER H P. Microchim. Acta, 2019, 186(2):119.
-
[39]
WU J, DONG M L, ZHANG C, WANG Y, XIE M X, CHEN Y P. Sensors, 2017, 17:1286.
-
[40]
ZHAO Y T, YANG M M, FU Q Q, OUYANG H, WEN W, SONG Y, ZHU C Z, LIN Y H, DU D. Anal. Chem., 2018, 90:7391-7398.
-
[41]
COSTA E, CLIMENT E, AST S, WELLER M G, CANNING J, RURACK K. Analyst, 2020, 145:3490.
-
[42]
HASSAN A H A, BERGUA J F, MORALES-NARVÁEZ E, MEKOÇI A. Food Chem., 2019, 197:124965.
-
[43]
XIAO W, HUANG C H, XU F, YAN J J, BIAN H F, FU Q Q, XIE K X, WANG L, TANG Y. Sens. Actuators, B, 2018, 266:63-70.
-
[44]
JIN B R, YANG Y X, HE R Y, PARK Y I, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.
-
[45]
GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LIN X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.
-
[46]
ZHONG Z T, WANG H B, ZHANG T, LI C Q, LIU B, ZHAO Y D. Food Chem., 2021, 352:129330.
-
[47]
JUNG Y, HEO Y, LEE J J, DEERING A, BAE E. J. Microbiol. Methods, 2020, 168:105800.
-
[48]
LIU Z W, HUA Q C, WANG J, LIANG Z Q, LI J H, WU J X, SHEN X, LEI H T, LI X M. Biosens. Bioelectron., 2020, 158:112178.
-
[49]
NARDO F D, ALLADIO E, BAGGIANI C, CAVALERA S, GIOVANNOLI C, SPANO G, ANFOSSI L. Talanta, 2019, 192:288-294.
-
[50]
TIAN R, JI J Y, ZHOU Y Y, DU Y M, BIAN X J, ZHU F L, LIU G, DENG S Y, WAN Y, YAN J. Biosens. Bioelectron., 2020, 160:112218.
-
[51]
HAN M M, GONG L, WANG J Y, ZHANG X P, JIN Y P, ZHAO R M, YANG C J, HE L D, FENG X Y, CHEN Y Q. Sens. Actuators, B, 2019, 292:94-104.
-
[52]
LAI W H, XIONG Z J, HUANG Y J, SU F M, ZHANG G G, HUANG Z, PENG J, LIU D F. Food Agric. Immunol., 2019, 30(1):1225-1238.
-
[53]
ZHANG W J, DUAN H, CHEN R, MA T T, ZENG L F, LENG Y K, XIONG Y H. Talanta, 2019, 194:604-610.
-
[54]
CHENG N, SONG Y, FU Q Q, DU D, LUO Y B, WANG Y, XU W T, LIN Y H. Biosens. Bioelectron., 2018, 117:75-83.
-
[55]
CHENG N, SHI Q R, ZHU C Z, LI S Q, LIN Y H, DU D. Biosens. Bioelectron., 2019, 142:111498.
-
[56]
-
[57]
-
[1]
-
-
-
[1]
Shitong Wang , Yangyang He , Xihong Xiong , Wei Zhang , Meilin Xia , Fenglin Tang . 基于手机RGB图像-微信小程序的化学需氧量(COD)实时可视化快速分析. University Chemistry, 2026, 41(1): 394-405. doi: 10.12461/PKU.DXHX202506011
-
[2]
Hongmei Chai , Yixia Ren , Xiangyang Hou , Long Tang , Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086
-
[3]
Lin LI , Le CHEN , Lingjie HOU , Jiaqi JING , Jiayu DING , Tao ZHOU , Ruiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130
-
[4]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[5]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[6]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[7]
Wenhui Li , Changshuo Zhu , Xinyu Cui , Chenfei Zhao , Lina Qiu , Yan Li , Chuandong Wu , Min Yang , Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062
-
[8]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[9]
Zelin Wang , Gang Liu , Mengran Wang , Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077
-
[10]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[11]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[12]
Yao Chen , Bing Peng , Yuchi Zhao , Xiang Xiao , Tong Wang . Professional Synthesis and Innovation Experiment: Rapid Identification Experiment of Tea Grades Based on Colorimetric Sensor Array and Chemometrics. University Chemistry, 2026, 41(2): 366-374. doi: 10.12461/PKU.DXHX202503036
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[15]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[16]
Fan Yu , Aihua Li , Yun Liu , Tianrong Zhu , Liang Wang , Junhui Xu , Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037
-
[17]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[18]
Yuan Zhuang , Wenhui Li , Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070
-
[19]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[20]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
-
[1]
Metrics
- PDF Downloads(48)
- Abstract views(1432)
- HTML views(271)
Login In
DownLoad: