Citation: LI Hui,  YING Ying,  CAO Zhen,  LIU Guang-Yang,  WANG Jing. Research Progress on Rapid Detection Technology Based on Smartphone and Lateral Flow Immunoassay[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 1-11. doi: 10.19756/j.issn.0253-3820.201488 shu

Research Progress on Rapid Detection Technology Based on Smartphone and Lateral Flow Immunoassay

  • Corresponding author: CAO Zhen,  WANG Jing, 
  • Received Date: 12 August 2021
    Revised Date: 15 October 2021

    Fund Project: Supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (No.CAAS-ZDRW202011).

  • Lateral flow immunochromatographic strip is one of the mainstream rapid detection products in the current market. Smartphones with built-in high-definition cameras have been popular among consumers in recent years. By taking a picture via mobile phones, then analyzing with machine vision image recognition technology, the optical signal of strip developed color could be converted into digital signal based on visible light colorimetric analysis or fluorescence analysis technology. This has become a research hotspot of rapid detection to realize qualitative or quantitative determination based on strip color development in recent years. In this paper, the applications of rapid detection technology based on smartphone and lateral flow immunoassay in medical diagnosis, environmental monitoring and food safety were reviewed. Moreover, the quantitative detection mode, implementation method and challenges of rapid test strip products based on smartphone photography were also discussed and summarized, which could provide reference for its realization of multi-target analysis, on-site rapid qualitative and quantitative detection.
  • 加载中
    1. [1]

    2. [2]

      KOCZULA K M, GALLOTTA A. Essays Biochem., 2016, 60(1):111-120.

    3. [3]

      LIU F M, ZHANG H L, WU Z H, DONG H D, ZHOU L, YANG D W, GE Y Q, JIA C P, LIU H Y, JIN Q H, ZHAO J L, ZHANG Q Q, MAO H J. Talanta, 2016, 161:205-210.

    4. [4]

      WEN T, HUANG C, SHI F J, ZENG X Y, LU T, DING S N, JIAO Y J. Analyst, 2020, 145:5345.

    5. [5]

      HUA X D, QIAN G L, YANG J F, HU B S, FAN J Q, QIN N, LI G, WANG Y Y, LIU F Q. Biosens. Bioelectron., 2010, 26:189-194.

    6. [6]

      XING C R, LIU L Q, SONG S S, FENG M, KUANG H, XU C L. Biosens. Bioelectron., 2015, 66:445-453.

    7. [7]

      NARDO F D, BAGGIANI C, GIOVANNOLI C, SPANO G, ANFOSSI L. Microchim Acta, 2017, 184:1295-1304.

    8. [8]

      WU W D, LI M, CHEN M, LI L P, WANG R, CHEN H L, CHEN F Y, MI Q, LIANG W W, CHEN H Z. Biosens. Bioelectron., 2017, 91:66-69.

    9. [9]

      REZAZADEH M, SEIDI S, LID M, BJERGAARD S P, YAMINI Y. TRAC-Trends Anal. Chem., 2019, 118:548-555.

    10. [10]

      RODA A, MICHELINI E, ZANGHERI M, FUSCO M D, CALABRIA D, SIMONI P. TRAC-Trends Anal. Chem., 2016, 79:317-325.

    11. [11]

      CHANG Y C, GE X X, WANG L J, LEE S S, PAULSEN M H, KHAN Q M, KHALID Z M, BHALLI J A, WAHEED U, SIMPSON C D, DU D, LI L, LIN Y H. Sens. Actuators, B, 2018, 275:300-305.

    12. [12]

      LI F Y, ZHENG Y, WU J, ZHAO L, SHUI L L, PU Q S, LIU S R. Talanta, 2019, 203:83-89.

    13. [13]

      CHOODUM A, KANATHARANA P, WONGNIRAMAIKUL W, DAEID N N. Talanta, 2013, 115:143-149.

    14. [14]

      SUMRIDDETCHKAJORN S, CHAITAVON K, INTARAVANNE Y. Sens. Actuators, B, 2014, 191:561-566.

    15. [15]

      ZEINHOM M M A, WANG Y J, SHENG L N, DU D, LI L, ZHU M J, LIN Y H. Sens. Actuators, B, 2018, 261:75-82.

    16. [16]

      CHEN Y, FU Q Q, LI D G, XIE J, KE D X, SONG Q F, TANG Y, WANG H. Anal. Bioanal. Chem., 2017, 409:6567-6574.

    17. [17]

      LI Z M, LI Z H, ZHAO D Y, WEN F, JIANG J D, XU D K. Biosens. Bioelectron., 2017, 87:874-880.

    18. [18]

      ROSS G M S, BREMER M G E G, NIELEN M W F. Anal. Bioanal. Chem., 2018, 410(22):5353-5371.

    19. [19]

      DUTTA S. TRAC-Trends Anal. Chem., 2019, 110:393-400.

    20. [20]

    21. [21]

      NGOM B, GUO Y C, WANG X L, BI D R. Anal. Bioanal. Chem., 2010, 397:1113-1135.

    22. [22]

      POSTHUMA-TRUMPIE G A, KORF J, AMERONGEN A V. Anal. Bioanal. Chem., 2009, 393:569-582.

    23. [23]

      XU H, XIA A Y, LUO J, GAO M X, LIAO R K, LI F K, ZHONG Q, ZHANG W Q, WANG Y, CUI J H,FU W L, CHANG K, GAN M Z, JIANG W B, CHEN M. Sens. Actuators, B, 2020, 308:127750.

    24. [24]

      PREECHAKASEDKIT P, OSADA K, KATAYAMA Y, RUECHA N, SUZUKI K, CHAILAPAKUL O, CITTERIO D. Analyst, 2018, 143:564.

    25. [25]

      HOU Y F, WANG K, XIAO K, QIN W J, LU W T, TAO W, CUI D X. Nanoscale Res. Lett., 2017, 12:291.

    26. [26]

      LIU J T, FAN Y, KONG Z, WANG Y, LUO J P, XU S W, JIN H Y, CAI X X. Sens. Actuators, B, 2018, 259:1073-1081.

    27. [27]

      YOU M L, LIN M, GONG Y, WANG S R, LI A, JI L Y, ZHAO H X, LING K, WEN T, HUANG Y, GAO D F, MA Q, WANG T Z, MA A Q, LI X L, XU F. ACS Nano, 2017, 11:6261-6270.

    28. [28]

      RONG Z, BAI Z K, LI J N, TANG H, SHEN T Y, WANG Q, WANG C W, XIAO R, WANG S Q. Biosens. Bioelectron., 2019, 145:111719.

    29. [29]

      MAHMOUD M, RUPPERT C, RENTSCHLER S, LAUFER S, DEIGNERABDE H P. Sens. Actuators, B, 2021, 333:129246.

    30. [30]

      CHOI S, KIM S, YANG J S, LEE J H, JOO C, JUNG H I. Sens. Biosensing Res., 2018, 2:8-11.

    31. [31]

      ZANGHERI M, CEVENINI L, ANFOSSI L, BAGGIANI C, SIMONI P, NARDO F D, RODA A. Biosens. Bioelectron., 2015, 64:63-68.

    32. [32]

      WANG J, JIANG C, JIN J, JIN J N, YU W B, SU B, HU J. Angew Chem., Int. Edit., 2021, 60(23):13042-13049.

    33. [33]

      RONG Z, WANG Q, SUN N X, JIA X F, WANG K L, XIAO R, WANG S Q. Anal. Chim. Acta, 2019, 1055:140-147.

    34. [34]

      JIANG H Q, WU D, SONG L W, YUAN Q, GE S X, MIN X P, XIA N S, QIAN S Z, QIU X B. SLAS Technol., 2017, 22(2):122-129.

    35. [35]

      SONG L W, WANG Y B, FANG L L, WU Y, YANG L, CHEN J Y, GE S X, ZHANG J, XIONG Y Z,DENG X M, MIN X P, ZHANG J, CHEN P J, YUAN Q, XIA N S. Anal. Chem., 2015, 87:5173-5180.

    36. [36]

      YEO S J, CHOI K, CUC B T, HONG N N, BAO D T, NGOC N M, LE M Q, HANG N L K, THACH N C, MALLIK S K, KIM H S, CHONG C K, CHOI H S, SUNG H W, YU K, PARK H. Theranostics, 2016, 6(2):231-242.

    37. [37]

      RODA A, CAVALERA S, NARDO F D, CALABRIA D, ROSATI S, SIMONI P, COLITTI B, BAGGIANI C, RODA M, ANFOSSI L. Biosens. Bioelectron., 2021, 172:112765.

    38. [38]

      RUPPERT C, PHOGAT N, LAUFER S, KOHL M, DEIGNER H P. Microchim. Acta, 2019, 186(2):119.

    39. [39]

      WU J, DONG M L, ZHANG C, WANG Y, XIE M X, CHEN Y P. Sensors, 2017, 17:1286.

    40. [40]

      ZHAO Y T, YANG M M, FU Q Q, OUYANG H, WEN W, SONG Y, ZHU C Z, LIN Y H, DU D. Anal. Chem., 2018, 90:7391-7398.

    41. [41]

      COSTA E, CLIMENT E, AST S, WELLER M G, CANNING J, RURACK K. Analyst, 2020, 145:3490.

    42. [42]

      HASSAN A H A, BERGUA J F, MORALES-NARVÁEZ E, MEKOÇI A. Food Chem., 2019, 197:124965.

    43. [43]

      XIAO W, HUANG C H, XU F, YAN J J, BIAN H F, FU Q Q, XIE K X, WANG L, TANG Y. Sens. Actuators, B, 2018, 266:63-70.

    44. [44]

      JIN B R, YANG Y X, HE R Y, PARK Y I, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.

    45. [45]

      GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LIN X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.

    46. [46]

      ZHONG Z T, WANG H B, ZHANG T, LI C Q, LIU B, ZHAO Y D. Food Chem., 2021, 352:129330.

    47. [47]

      JUNG Y, HEO Y, LEE J J, DEERING A, BAE E. J. Microbiol. Methods, 2020, 168:105800.

    48. [48]

      LIU Z W, HUA Q C, WANG J, LIANG Z Q, LI J H, WU J X, SHEN X, LEI H T, LI X M. Biosens. Bioelectron., 2020, 158:112178.

    49. [49]

      NARDO F D, ALLADIO E, BAGGIANI C, CAVALERA S, GIOVANNOLI C, SPANO G, ANFOSSI L. Talanta, 2019, 192:288-294.

    50. [50]

      TIAN R, JI J Y, ZHOU Y Y, DU Y M, BIAN X J, ZHU F L, LIU G, DENG S Y, WAN Y, YAN J. Biosens. Bioelectron., 2020, 160:112218.

    51. [51]

      HAN M M, GONG L, WANG J Y, ZHANG X P, JIN Y P, ZHAO R M, YANG C J, HE L D, FENG X Y, CHEN Y Q. Sens. Actuators, B, 2019, 292:94-104.

    52. [52]

      LAI W H, XIONG Z J, HUANG Y J, SU F M, ZHANG G G, HUANG Z, PENG J, LIU D F. Food Agric. Immunol., 2019, 30(1):1225-1238.

    53. [53]

      ZHANG W J, DUAN H, CHEN R, MA T T, ZENG L F, LENG Y K, XIONG Y H. Talanta, 2019, 194:604-610.

    54. [54]

      CHENG N, SONG Y, FU Q Q, DU D, LUO Y B, WANG Y, XU W T, LIN Y H. Biosens. Bioelectron., 2018, 117:75-83.

    55. [55]

      CHENG N, SHI Q R, ZHU C Z, LI S Q, LIN Y H, DU D. Biosens. Bioelectron., 2019, 142:111498.

    56. [56]

    57. [57]

  • 加载中
    1. [1]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    15. [15]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    18. [18]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    19. [19]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(43)
  • Abstract views(857)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return