Citation: CHENG Jie-Hong,  CHEN Zheng-Guang. Wavelength Selection Method for Near Infrared Spectroscopy Based on Iteratively Retains Informative Variables and Successive Projections Algorithm[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1402-1409. doi: 10.19756/j.issn.0253-3820.201307 shu

Wavelength Selection Method for Near Infrared Spectroscopy Based on Iteratively Retains Informative Variables and Successive Projections Algorithm

  • Corresponding author: CHEN Zheng-Guang, ruzee@sina.com
  • Received Date: 25 May 2020
    Revised Date: 18 January 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2016YFD0701300), the key Scientific Research Program of Heilongjiang Agricultural Reclamation Bureau (No.HKKYZD190804), and the Scientific Research Projects of Basic Scientific Research Funds in Heilongjiang Provincial Colleges and Universities (No.ZRCPY201913).

  • As a wavelength selection algorithm, successive projection algorithm (SPA) is used in the quantitative analysis of near infrared spectroscopy to simplify the model complexity and improve the prediction accuracy. According to the principle of SPA algorithm, SPA method can only ensure that there is low redundancy between the two wavelengths selected by two adjacent projections, but it does not guarantee that the selected variables must be effective variables, that is to say, the subset of variables screened by SPA may contain some uninformation variables or even interfering variables. We extract effective variables (i.e. strong and weak information variables) by iteratively retains informative variables (IRIV), and then select wavelength by SPA based on effective variables, so as to solve the problem that the selected variables by SPA may contain uninformation and interfering variables, and improve the prediction accuracy of the model. The improved IRIV-SPA is applied to processing of two groups of public NIR spectral data. After the wavelengths are selected, the MLR model is established and compared with the FULL-PLSR model and some other commonly used high-performance wavelength selection methods (SPA, IRIV, RF) to prove the effectiveness of the improved IRIV-SPA algorithm. The results show that the improved IRIV-SPA-MLR model has the best prediction accuracy under two opening test datasets, which greatly improves the prediction accuracy and simplifies the complexity of the model compared with other algorithms. The improved IRIV-SPA can achieve efficient dimensionality reduction and is an effective wavelength selection algorithm.
  • 加载中
    1. [1]

      MEHMOOD T, LILAND K H, SNIPEN L, SAEBO S S. Chemom. Intell. Lab. Syst., 2012, 118: 62-69.

    2. [2]

      YUN Y H, LI H D, DENG B C, CAO D S. TrAC-Trends Anal. Chem., 2019, 113: 102-115.

    3. [3]

      ZOU X B, ZHAO J W, POVEY M J W, HOLMES M, MAO H P. Anal. Chim. Acta, 2010, 667(1-2): 14-32.

    4. [4]

      ARAUJO M C U, SALDANHA T C B, GALVÄO R K H, YONEYAMA T, CHAME H C, VISANI V. Chemom. Intell. Lab. Syst., 2001, 57(2): 65-73.

    5. [5]

    6. [6]

    7. [7]

    8. [8]

      TANG R, CHEN X, LI C. Appl. Spectrosc., 2018, 72(5): 740-749.

    9. [9]

      DE ALMEIDA V E, GOMES A D, FERNANDES D D D, GOICOECHEA H C, GALVAO R K H, ARAUJO M C U. Talanta, 2018, 181: 38-43.

    10. [10]

    11. [11]

    12. [12]

      YUN Y H, WANG W T, TAN M L, LIANG Y Z, LI H D, CAO D S, LU H M, XU Q S. Anal. Chim. Acta, 2014, 807: 36-43.

    13. [13]

      LI H D, XU Q S, LIANG Y Z. Anal. Chim. Acta, 2012, 740: 20-26.

    14. [14]

      [dataset] U.S. Army, Near Infrared Spectra of Diesel Fuels, Soutwest Research Institute (SWRI), Eigenvector Research Inconrporated.

    15. [15]

      [dataset] Havstrom, Soil Samples Measured by NIR, Long Term Field Experiment in Abisko, Quality & Technology.

    16. [16]

    17. [17]

      SOARES S F C, GOMES A, FILHO A R G, ARAUJO M C U, GALVAO R K H. TrAC-Trends Anal. Chem., 2013, 42: 84-98.

    18. [18]

    19. [19]

    20. [20]

    21. [21]

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Yifang Xu Jie Zheng Liangbing Gan . The Conception and Practice of Cultivating Outstanding and Diverse Graduate Students in Basic Disciplines: A Case Study of Graduate Student Cultivation in Chemistry Program at Peking University. University Chemistry, 2024, 39(6): 1-6. doi: 10.3866/PKU.DXHX202404018

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

Metrics
  • PDF Downloads(18)
  • Abstract views(1146)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return