Citation: SUN Chun-Yan,  SI Jin-Yu,  DU Cai-Yi,  LYU Ting,  LIU Ni,  ZHANG Xiao-Guang,  WANG Zuo-Zhao. Label-free Fluorescent Aptasensor Based on Exonuclease-assisted Target Recycling Strategy for Sensitive Detection of Oxytetracycline[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1488-1496. doi: 10.19756/j.issn.0253-3820.191720 shu

Label-free Fluorescent Aptasensor Based on Exonuclease-assisted Target Recycling Strategy for Sensitive Detection of Oxytetracycline

  • Corresponding author: ZHANG Xiao-Guang,  WANG Zuo-Zhao, 
  • Received Date: 5 December 2019
    Revised Date: 5 April 2021

    Fund Project: Supported by the Natural Science Foundation of Jilin Provincial Technology Development Program (No.20180101246JC), the "Thirteenth Five-Year" Science and Technology Project of Jilin Provincial Department of Education (No.20190170KJ) and the Fundamental Research Funds for the Central Universities of China.

  • A label-free fluorescence detection method was developed for quantitative determination of oxytetracycline (OTC) based on aptamer recognition capability and exonuclease Ⅰ (Exo Ⅰ)-assisted target recycling. In the absence of OTC, SYBR green I (SGI) molecules could insert the double-stranded DNA (dsDNA) of OTC aptamer and its complementary DNA, resulting in strong fluorescence emission of SGI with excitation wavelength of 495 nm. In the presence of OTC, due to the strong affinity of the aptamer to its target, aptamer preferentially bound with OTC and unwound the dsDNA. Thus, SGI molecules released from the hydrogen bonds of dsDNA, accompanied with the obvious decrease of SGI fluorescence. To amplify the fluorescence quenching effect of SGI caused by the addition of OTC, Exo Ⅰ-assisted target recycling was involved in. The results of acrylamide gel electrophoresis confirmed that Exo Ⅰ could digest single stranded DNA selectively and the aptamer bound with OTC. The released OTC participated in the next cycle, continuously destroyed the dsDNA structure, releasled the free SGI, and gradually weakened the fluorescence. Based on this Exo Ⅰ-catalyzed target recycling strategy, the sensitivity of this aptamer-based fluorescent strategy was significantly improved. The linear range of OTC was 0.01-10 μg/mL with a detection limit (3σ) of 6.77 ng/mL. The method realized the detection of OTC in milk and honey sample ssuccessfully. For milk samples, the recoveries were 93.0%-105.1% with relative standard deviations (RSD) of 0.5%-6.2%, and for honey samples, the recoveries were 94.0%-95.8% with RSD of 0.3%-7.7%, respectively. The fluorescence sensor had many advantages such as low cost, high sensitivity and good specificity, showing great potential in the rapid detection of residue of harmful substances in food.
  • 加载中
    1. [1]

      SVERSUT R A, DA SILVA A A, CARDOSO T F M, KASSAB N M, DO AMARAL M S, SALGADO H R N. Crit. Rev. Anal. Chem., 2017, 47(2):154-171.

    2. [2]

      GRANADOS-CHINCHILLA F, RODRIGUEZ C. J. Anal. Methods Chem., 2017, 2017:1315497.

    3. [3]

    4. [4]

      XU H, MI H Y, GUAN M M, SHAN H Y, FEI Q, HUAN Y F, ZHANG Z Q, FENG G D. Food Chem., 2017, 232:198-202.

    5. [5]

      MORENO-GONZALEZ D, GARCIA-CAMPANA A M. Food Chem., 2017, 221:1763-1769.

    6. [6]

      IBARRA I S, RODRIGUEZ J A, MIRANDA J M, VEGA M, BARRADO E. J. Chromatogr. A, 2011, 1218(16):2196-2202.

    7. [7]

      PASTOR-NAVARRO N, MORAIS S, MAQUIEIRA Á, PUCHADES R. Anal. Chim. Acta, 2007, 594(2):211-218.

    8. [8]

      CHAFER-PERICAS C, MAQUIEIRA Á, PUCHADES R, MIRALLES J, MORENO A, PASTOR-NAVARRO N, ESPINOS F. Anal. Chim. Acta, 2010, 662(2):177-185.

    9. [9]

      ELLINGTON A D, SZOSTAK J W. Nature, 1990, 346(6287):818-822.

    10. [10]

      TUERK C, GOLD L. Science, 1990, 249(4968):505-510.

    11. [11]

      ILIUK A B, HU L H, TAO W A. Anal. Chem., 2011, 83(12):4440-4452.

    12. [12]

      FENG C J, DAI S, WANG L. Biosens. Bioelectron., 2014, 59:64-74.

    13. [13]

      MALEKZAD H, JOUYBAN A, HASANZADEH M,SHADJOU N, DE LA GUARDIA M. TrAC-Trends Anal. Chem., 2017, 94:77-94.

    14. [14]

      DENG B, LIN Y W, WANG C, LI F, WANG Z X, ZHANG H Q, LI X F, LE X C. Anal. Chim. Acta, 2014, 837:1-15.

    15. [15]

      ILGU M, NILSEN-HAMILTON M. Analyst, 2016, 141(5):1551-1568.

    16. [16]

      NIAZI J H, LEE S J, KIM Y S, GU M B. Bioorgan. Med. Chem., 2008, 16(3):1254-1261.

    17. [17]

      KIM Y S, NIAZI J H, GU M B. Anal. Chim. Acta, 2009, 634(2):250-254.

    18. [18]

      KIM Y S, KIM J H, KIM I A, LEE S J, JUMG J, GU M B. Biosens. Bioelectron., 2010, 26(4):1644-1649.

    19. [19]

      HOU H, BAI X J, XING C Y, GU N Y, ZHANG B L, TANG J L. Anal. Chem., 2013, 85(4):2010-2014.

    20. [20]

      SU R F, XU J Y, LUO Y L, LI Y, LIU X, BIE J X, SUN C Y. Mater. Lett., 2016, 180:31-34.

    21. [21]

      ZHOU N, MA Y S, HU B, HE L H, WANG S J, ZHANG Z H, LU S Y. Biosens. Bioelectron., 2019, 127:92-100.

    22. [22]

      WANG R E, ZHANG Y, CAI J, CAI W, GAO T. Curr. Med. Chem., 2011, 18(27):4175-4184.

    23. [23]

      DU Y, LI B L, WANG E K. Acc. Chem. Res., 2013, 46(2):203-213.

    24. [24]

      KONG L, XU J, XU Y Y, XIANG Y, YUAN R, CHAI Y Q. Biosens. Bioelectron., 2013, 42:193-197.

    25. [25]

      SRINIVASAN S, RANGANATHAN V, DEROSA M C, MURARI B M. Anal. Biochem., 2018, 559:17-23.

    26. [26]

      ZHANG H, FANG C C, WU S J, DUAN N, WANG Z P. Anal. Biochem., 2015, 489:44-49.

    27. [27]

      YAN M M, BAI W H, ZHU C, HUANG Y F, YAN J, CHEN A L. Biosens. Bioelectron., 2016, 77:613-623.

    28. [28]

      WU S J, DUAN N, MA X Y, XIA Y, WANG H X, WANG Z P. Anal. Chim. Acta, 2013, 782:59-66.

    29. [29]

      WEN W, HU R, BAO T, ZHANG X H, WANG S F. Biosens. Bioelectron., 2015, 71:13-17.

    30. [30]

      YAN Z D, GAN N, LI T H, CAO Y T, CHEN Y J. Biosens. Bioelectron., 2016, 78:51-57.

    31. [31]

      WANG C K, TAN R, LI J Y, ZHANG Z X. Anal. Bioanal. Chem., 2019, 411(11):2405-2414.

    32. [32]

    33. [33]

    34. [34]

      BAHREYNI A, LUO H L, RAMEZANI M, ALIBOLANDI M, SOHEILI V, DANESH N M, ASHJAEI M S, ABNOUS K, TAGHDISI S M. Spectrochim. Acta, Part A, 2021, 246:119009.

    35. [35]

      ESMAELPOURFARKHANI M, ABNOUS K, TAGHDISI S M, CHAMSAZ M. Microchim. Acta, 2019, 186:290.

    36. [36]

      HE J C, LI G K, HU Y L. Microchim. Acta, 2017, 184(7):2365-2373.

    37. [37]

      ZHAO H M, GAO S, LIU M, CHANG Y Y, FAN X F, QUAN X. Microchim. Acta, 2013, 180(9-10):829-835.

    38. [38]

      WANG Y L, NI P J, JIANG S, LU W D, LI Z, LIU H M, LIN J, SUN Y J, LI Z. Sens. Actuators, B, 2018, 254:1118-1124.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    10. [10]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    11. [11]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(5)
  • Abstract views(720)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return