Citation: HAN Zeng-Peng, SHI Xiang-Wei, YING Min, ZHENG Ning, LI Mei, ZHANG Zhi-Jian, WU Yang, WANG Hua-Dong, WANG Jie, HU Liang, JIA Fan, XU Fu-Qiang. Tools for Neural Circuit Tracing Based on Neurotropic Viruses[J]. Chinese Journal of Analytical Chemistry, ;2019, 47(10): 1639-1650. doi: 10.19756/j.issn.0253-3820.191428
-
The brain is probably the most complex system. Neurocircuits, formed by various types of neurons through synaptic connections, are the basis of brain functions, from the basic homeostasis, senses and perception, for learning, memory, decision-making, and consciousness. Therefore, it is of great significance to understand the component and working principle of neurocircuits, so as to recognize, utilize and protect the brain. Techniques for exploring the structure and function of neurocircuits include circuit-tracing, manipulating, imaging and data-analyzing. In this paper, we focus on the neurocircuit tracers based on neurotropic viruses and its application technology. The categories and characteristics, genetic modification, selection principles and application limitations of commonly used neurotropic viral tools will be discussed. The non-transsynaptic tracer system, the trans-monosynaptic tracer system and the trans-multisynaptic tracer system are also introduced to help readers understand the commonly used circuit tracing methods and research progress.
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[31]
-
[32]
-
[33]
-
[34]
-
[35]
-
[36]
-
[37]
-
[38]
-
[39]
-
[40]
-
[41]
-
[42]
-
[43]
-
[44]
-
[45]
-
[46]
-
[47]
-
[48]
-
[49]
-
[50]
-
[51]
-
[52]
-
[53]
-
[54]
-
[55]
-
[56]
-
[57]
-
[58]
-
[59]
-
[60]
-
[61]
-
[62]
-
[63]
-
[64]
-
[65]
-
[66]
-
[67]
-
[68]
-
[69]
-
[70]
-
[71]
-
[72]
-
[73]
-
[74]
-
[75]
-
[76]
-
[77]
-
[78]
-
[79]
-
[80]
-
[81]
-
[82]
-
[83]
-
[84]
-
[85]
-
[86]
-
[87]
-
[88]
-
[89]
-
[90]
-
[91]
-
[92]
-
[93]
-
[94]
-
[95]
-
[96]
-
[97]
-
[98]
-
[99]
-
[100]
-
[101]
-
[102]
-
[103]
-
[104]
-
[105]
-
[106]
-
[107]
-
[108]
-
[109]
-
[110]
-
[111]
-
[112]
-
[113]
-
[114]
-
[115]
-
[116]
-
[117]
-
[118]
-
[119]
-
[120]
-
[121]
-
[122]
-
[123]
-
[124]
-
[125]
-
[1]
-
-
[1]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[2]
Zhijun Huang , Jiawei Li , Mojin Lu , Fa Zhou , Limiao Chen , Jianhan Huang , Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026
-
[3]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[4]
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
-
[5]
Xiao-Qi Xu , Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049
-
[6]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[7]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[9]
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
-
[10]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[11]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[12]
Xiaojun Wu , Kai Hu , Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052
-
[13]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[1]
Metrics
- PDF Downloads(22)
- Abstract views(923)
- HTML views(103)