Citation: LI Xue-Ying,  REN Guo-Xing,  LYU Mei-Rong,  LIU Yan,  SUN Zhong-Liang,  HOU Guang-Li,  FAN Ping-Ping. Study on Calibration Transfer between Laboratory Spectrometer and Hyperspectral Camera[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1580-1586. doi: 10.19756/j.issn.0253-3820.191165 shu

Study on Calibration Transfer between Laboratory Spectrometer and Hyperspectral Camera

  • Corresponding author: FAN Ping-Ping, fanpp_sdioi@126.com
  • Received Date: 29 March 2019
    Revised Date: 19 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.U2006209, 3130041) and the Shandong Provincial Natural Science Foundation, China (Nos.ZR2018LD007, ZR2017BB037).

  • Laboratory spectrometer is a spectrometer that can only obtain spectral signals by spectrometer, and hyperspectral camera acquires image and spectral information by image. Under the condition of using laboratory spectrometer, the calibration transfer of different temperatures, different ordinary spectrometers, different measuring conditions and samples from different regions has been studied. But there are few studies on the calibration transfer between laboratory spectrometer and hyperspectral camera. Taking 164 soil samples from Qingdao as an example, the spectral data of laboratory spectrometer and hyperspectral camera data were obtained in this work. The content models of total nitrogen (TN) and total phosphorus (TP) were established based on the spectral data of laboratory spectrometer. Three methods, namely piecewise direct correction algorithm, model updating and slope/bias correction (PDS-MP-S/B), were used to transfer the hyperspectral data. The transferred hyperspectral data were substituted into the content models of TN and TP to predict their content values and evaluate the prediction effect. Meanwhile, the influence of the number of PDS window and the number of standard set on the prediction results was analyzed. When the number of PDS window was 19 and the number of standard set was 120, the prediction effect after calibration transfer was the best, absolute coefficient of test set (Rt2) was 0.736 and root mean square error of prediction (RMSEP) was 0.274. In the content prediction of TP, when the number of PDS window was 23 and the number of standard set was 80, the prediction effect after calibration transfer was the best, Rt2 was 0.647 and RMSEP was 0.231. The solution of model transfer between laboratory spectrometers and hyperspectral cameras provided a powerful basis for rapid prediction of a large number of image information data collected by hyperspectral cameras, which greatly reduced the workload, and the wide application of hyperspectral cameras in quantitative analysis and rapid measurement technology.
  • 加载中
    1. [1]

      GUO Y, NI Y, KOKOT S. Spectrochim. Acta, Part A, 2016, 153:79-86.

    2. [2]

      NASEER N, QURESHI N K, NOORI F M, HONG K S. Front. Human Neurosci., 2016, 10:237.

    3. [3]

      LI X Y, LIU Y, LV M R, ZOU Y, FAN P P. J. Spectrosc., 2018, 2018:8513215.

    4. [4]

      SANGHAVI S V, MARTONCHIK J V, DAVIS A B, DINER D J. J. Quant. Spectrosc. Radiat. Transfer, 2013, 116:1-16.

    5. [5]

      BIN J, LI X, FAN W, ZHOU J H, WANG C W. Analyst, 2017, 142(12):2229-2238.

    6. [6]

      ESKILDSEN CE, HANSEN PW, SKOV T, MARINI F, NØRGAARD L. J. Near Infrared Spec., 2016, 24:151-156.

    7. [7]

      ROOSJEN P P J, BREDE B, SUOMALAINEN J M, BARTHOLOMEUS H M, KOOISTRA L, CLEVERS J G P W. Int. J. Appl. Earth Obs., 2018, 66:14-26.

    8. [8]

      PU Y Y, SUN D W, RICCIOLI C, BUCCHERI M, GRASSI M, CATTANEO T M P, GOWEN A. Food Anal. Methods, 2018, 11(4):1021-1033.

    9. [9]

      FERNANDEZ L, GUNEY S, GUTIERREZ-GALVEZ A, MARCO S. Sens. Actuators, B, 2016, 231:276-284.

    10. [10]

      MILANEZ K D T M, NÓBREGA T C A, NASCIMENTO D S, INSAUSTI M, PONTES M J C. Microchem. J., 2017, 133:669-675.

    11. [11]

      ZHANG J, ZHANG Z, XIANG Y, DAI Y, HARRINGTON P D B. Talanta, 2011, 83(5):1401-1409.

    12. [12]

      PEREIRA L S, CARNEIRO M F, BOTELHO B G, SENA M M. Talanta, 2016, 147:351-357.

    13. [13]

      NOURI M, GOMEZ C, GORRETTA N, ROGER J M. Geoderma, 2017, 298:54-66.

    14. [14]

      COOPER J B, LARKIN C M, ABDELKADER M F. J. Near Infrared Spectrosc., 2011, 19(2):139-150.

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    4. [4]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    10. [10]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    11. [11]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    12. [12]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    13. [13]

      Weiguang Zhao . 化学实验室常见安全事故应急处置的思考与建议. University Chemistry, 2025, 40(8): 291-297. doi: 10.12461/PKU.DXHX202410053

    14. [14]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    15. [15]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    16. [16]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    17. [17]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    18. [18]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(17)
  • Abstract views(1358)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return