Citation: Jing SUN, Hai-Xiong LIU, Tian-Fu LIU. Synthesis, Crystal Structure and Characterization of a New Hydrogen-bonded Organic Framework[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 1082-1087. doi: 10.14102/j.cnki.0254–5861.2011–3113 shu

Synthesis, Crystal Structure and Characterization of a New Hydrogen-bonded Organic Framework

  • Corresponding author: Hai-Xiong LIU, cgliuhx@126.com Tian-Fu LIU, tfliu@fjirsm.ac.cn
  • Received Date: 22 January 2021
    Accepted Date: 3 March 2021

    Fund Project: Fujian Young and Middle-aged Teachers' Educational Research Project JT180842

Figures(5)

  • The hydrogen-bonded organic framework (PFC-32), constructed by tetrahydroxyquinone (THQN) and diethylamine (DEA), was readily prepared via hydrothermal synthesis in DEF (N, N-diethylformamide). PFC-32 was characterized by PXRD, IR, UV-Vis, TGA and photoluminescence (PL). Single crystal analysis reveals that PFC-32 shows a three-dimensional (3D) framework, where the THQN anions are coplanar and separated by DEA cations. PFC-32 displays intrinsic photoluminescence property owing to the alleviation of the aggregation-caused quenching (ACQ) effect caused by π-π stacking.
  • 加载中
    1. [1]

      Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lu, J.; Liu, T. F.; Cao, R. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed. Engl. 2018, 57, 7691–7696.  doi: 10.1002/anie.201800354

    2. [2]

      Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 2017, 356, 731–735.  doi: 10.1126/science.aam8310

    3. [3]

      Shao, P.; Li, J.; Chen, F.; Ma, L.; Li, Q.; Zhang, M.; Zhou, J.; Yin, A.; Feng, X.; Wang, B. Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity. Angew. Chem. Int. Ed. Engl. 2018, 57, 16501–16505.

    4. [4]

      Huang, N.; Ding, X.; Kim, J.; Ihee, H.; Jiang, D. A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 2015, 54, 8704–8707.

    5. [5]

      Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018, 7883.

    6. [6]

      Cai, S.; Shi, H.; Zhang, Z.; Wang, X.; Ma, H.; Gan, N.; Wu, Q.; Cheng, Z.; Ling, K.; Gu, M.; Ma, C.; Gu, L.; An, Z.; Huang, W. Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π-π interactions. Angew. Chem. Int. Ed. Engl. 2018, 57, 4005–4009.  doi: 10.1002/anie.201800697

    7. [7]

      Li, Y. L.; Alexandrov, E. V.; Yin, Q.; Li, L.; Fang, Z. B.; Yuan, W.; Proserpio, D. M.; Liu, T. F. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 2020, 142, 7218–7224.

    8. [8]

      Liu, B. T.; Pan, X. H.; Nie, D. Y.; Hu, X. J.; Liu, E. P.; Liu, T. F. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 2020, 32, e2005912.

    9. [9]

      Li, Y. L.; Yin, Q.; Liu, T. F.; Cao, R.; Yuan, W. B. A novel porphyrin-based hydrogen-bonded organic framework. Chin. J. Struct. Chem. 2019, 38, 2083–2088.

    10. [10]

      Ye, Y. Z.; Lin, S.; Wu, X. J. Synthesis, structure and luminescent property of an europium(III) coordination polymer. Chin. J. Struct. Chem. 2014, 33, 1649–1654.

    11. [11]

      Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159–2163.

    12. [12]

      Chen, Y.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z. Aggregation-induced emission: fundamental understanding and future developments. Mater. Horiz. 2019, 6, 428–433.  doi: 10.1039/C8MH01331D

    13. [13]

      Lu, Z.; Wu, M.; Wu, S.; Yang, S.; Li, Y.; Liu, X.; Zheng, L.; Cao, Q.; Ding, Z. Modulating the optical properties of the AIE fluophor confined within UiO-66's nanochannels for chemical sensing. Nanoscale 2016, 8, 17489–17495.  doi: 10.1039/C6NR05600H

    14. [14]

      Wang, H. P.; Wang, H. L.; Li, B. L. Synthesis, structure, luminescence and thermal stability properties of a new (3, 4)-connected 2D Zn coordination polymer. Chin. J. Struct. Chem. 2020, 39, 1835–1840.

    15. [15]

      Li, J.; Wang, Y. H.; Song, R. F. A novel two-dimensional lead(II) coordination polymer based on dinuclear lead(II) unit containing (5-chloro-quinolin-8-yloxy) acetate. Chin. J. Struct. Chem. 2014, 33, 1488–1494.

    16. [16]

      Ding, S. P.; Zhang, Z. Y.; Zhou, G. J.; Cao, R. Synthesis, structure and luminescence properties of dumbbell-like silver clusters. Chin. J Struct. Chem. 2020, 39, 1824–1834.

    17. [17]

      Yu, T.; Ou, D.; Yang, Z.; Huang, Q.; Mao, Z.; Chen, J.; Zhang, Y.; Liu, S.; Xu, J.; Bryce, M. R.; Chi, Z. The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials. Chem. Sci. 2017, 8, 1163–1168.  doi: 10.1039/C6SC03177C

    18. [18]

      Wilsens, C. H. R. M.; Deshmukh, Y. S.; Noordover, B. A. J.; Rastogi, S. Influence of the 2, 5-furandicarboxamide moiety on hydrogen bonding in aliphatic-aromatic poly(ester amide)s. Macromolecules 2014, 47, 6196–6206.

    19. [19]

      Jahan, M.; Bao, Q.; Loh, K. P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.  doi: 10.1021/ja211433h

    20. [20]

      Sk, M.; Grzywa, M.; Volkmer, D.; Biswas, S. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal-organic framework. J. Solid State Chem. 2015, 232, 221–227.  doi: 10.1016/j.jssc.2015.09.034

    21. [21]

      Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K.; Shankar, K. C3N5: a low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 2019, 141, 5415–5436.  doi: 10.1021/jacs.9b00144

  • 加载中
    1. [1]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    2. [2]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    3. [3]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    6. [6]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    7. [7]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    8. [8]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    9. [9]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    10. [10]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    11. [11]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    12. [12]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    15. [15]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    16. [16]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    17. [17]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    18. [18]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    19. [19]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    20. [20]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

Metrics
  • PDF Downloads(1)
  • Abstract views(306)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return