Citation: Wen-Bo ZHAO, Ya-Lan ZHANG, Guang-Yu XU, Xiao JIA, Jin-Ping XUE. Conjugation of Disassembled Zincphthalocyanine-based Nanocomposites and the Synergistic Effect on Visible-light Photosensitive Activity[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 1012-1022. doi: 10.14102/j.cnki.0254–5861.2011–3104 shu

Conjugation of Disassembled Zincphthalocyanine-based Nanocomposites and the Synergistic Effect on Visible-light Photosensitive Activity

  • Corresponding author: Xiao JIA, jiaxiao@fzu.edu.cn Jin-Ping XUE, xuejinping66@fzu.edu.cn
  • Received Date: 20 January 2021
    Accepted Date: 8 April 2021

    Fund Project: the National Health and Family Planning Commission jointly established Scientific Research Fund WKJ2016-2-14the Natural Science Foundation of Fujian Province 2017J05021

Figures(9)

  • In this research, a conjugated Pc-MIL-88B (Fe) nanoplatform was constructed via a condensation process between modified zinc phthalocyanine and MIL-88B (Fe) for the removal of organic pollutants. The as-prepared material was fully characterized by TEM, XPS, ICP, FTIR, UV-Vis, N2 adsorption-desorption isotherm, etc. The results indicate that Pc-MIL-88B (Fe) preserved the topological structure of MIL-88B (Fe), and the micropores of framework could effectively prevent the aggregation of Pc in water. Meanwhile, the conjugated Pc-MIL-88B (Fe) basically maintains the singlet oxygen quantum yield of Pc, and behaves a much higher photocurrent intensity compared to NH2-MIL-88B (Fe). Additionally, the photosensitive activity and reusability of Pc-MIL-88B (Fe) were evaluated by the degradation of methylene blue in aqueous solution under visible light irradiation, and the degradation mechanism was also investigated in detail.
  • 加载中
    1. [1]

      Li, Q.; Wang, H. G.; Li, Y.; Li, Y.; Duan, Q. Conjugated microporous polymers bearing metallophthalocyanine moieties with enhanced visible-light photocatalytic activity. Dyes Pigments. 2018, 149, 261-267.  doi: 10.1016/j.dyepig.2017.09.070

    2. [2]

      Yang, W. L.; Liu, G. S.; Chen, Y. H.; Miao, D. T.; Wei, Q. P.; Li, H. C.; Ma, L.; Zhou, K. C.; Liu, L. B.; Yu, Z. M. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode. Chemosphere 2020, 252, 126499-10.  doi: 10.1016/j.chemosphere.2020.126499

    3. [3]

      Wang, J. H.; Shao, X. Z.; Liu, J. H.; Zhang, Q.; Ji, X. H.; Tian, G. H. Mesoporous magnetic g-C3N4 nanocomposites for photocatalytic environmental remediation under visible light. Ecotoxicol. Environ. Saf. 2020, 205, 111147-9.  doi: 10.1016/j.ecoenv.2020.111147

    4. [4]

      Wu, M. X.; Lei, H.; Chen, J. Y.; Dong, X. P. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 2021, 587, 883-890.  doi: 10.1016/j.jcis.2020.11.049

    5. [5]

      Cai, T.; Liu, Y. T.; Wang, L. L.; Zhang, S. Q.; Zeng, Y. X.; Yuan, J. J.; Ma, J. H.; Dong, W. Y.; Liu, C. B.; Luo, S. L. Silver phosphate-based Z-scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B 2017, 208, 1-13.  doi: 10.1016/j.apcatb.2017.02.065

    6. [6]

      Mohanta, M. K.; Kishore, A.; De Sarkar, A. Two-dimensional ultrathin van der waals heterostructures of indium selenide and boron monophosphide for superfast nanoelectronics, excitonic solar cells, and digital data storage devices. Nanotechnology 2020, 31, 495208-16.  doi: 10.1088/1361-6528/abaf20

    7. [7]

      Yu, J. C.; Xie, Y.; Tang, H. Y.; Zhang, L.; Chan, H. C.; Zhao, J. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. J. Photochem. Photobiol. A 2003, 156, 235-241.  doi: 10.1016/S1010-6030(03)00008-X

    8. [8]

      Ding, X.; Han, B. H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem. Int. Edit. 2015, 54, 6536-9.  doi: 10.1002/anie.201501732

    9. [9]

      Mgidlana, S.; Nyokong, T. Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. Inorg. Chim. Acta 2021, 514, 119970-12.  doi: 10.1016/j.ica.2020.119970

    10. [10]

      Thakur, N. S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y. N.; Kushwah, V.; Jain, S.; Kalia, Y. N.; Bhaumik, J.; Banerjee, U. C. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomed. -Nanotechnol. Biol. Med. 2021, 33, 102368-12.  doi: 10.1016/j.nano.2021.102368

    11. [11]

      Peng, J. Y.; Wei, L. Y.; Liu, Y. X.; Zhuge, W. F.; Huang, Q.; Huang, W.; Xiang, G.; Zhang, C. Z. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection. RSC Adv. 2020, 10, 36828-36835.  doi: 10.1039/D0RA06783K

    12. [12]

      Yuan, Z. C.; Lan, Y.; Chen, S. Y.; Chen, D. J. Preparation of magnetically recyclable palygorskite Fe-octacarboxylic acid phthalocyanine nano-composites and their photocatalytic behavior for degradation of Rhodamine B. Appl. Clay Sci. 2017, 147, 153-159.  doi: 10.1016/j.clay.2017.07.029

    13. [13]

      Wong, R. C. H.; Lo, P. C.; Ng, D. K. P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev. 2019, 379, 30-46.  doi: 10.1016/j.ccr.2017.10.006

    14. [14]

      Wan, S. S.; Cheng, Q.; Zeng, X.; Zhang, X. Z. A Mn(III)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 2019, 13, 6561-6571.  doi: 10.1021/acsnano.9b00300

    15. [15]

      Deng, Q. Q.; Sun, P. P.; Zhang, L.; Liu, Z. W.; Wang, H.; Ren, J. S.; Qu, X. G. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Adv. Funct. Mater. 2019, 29, 1903018-9.  doi: 10.1002/adfm.201903018

    16. [16]

      Liu, X. C.; Zhou, Y. Y.; Zhang, J. C.; Tang, L.; Luo, L.; Zeng, G. M. Iron containing metal-organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl. Mater. Interfaces 2017, 9, 20255-20275.  doi: 10.1021/acsami.7b02563

    17. [17]

      Laurier, K. G. M.; Vermoortele, F.; Ameloot, R.; De Vos, D. E.; Hofkens, J.; Roeffaers, M. B. J. Iron(III)-based metal-organic frameworks as visible light photocatalysts. J. Am. Chem. Soc. 2013, 135, 14488-14491.  doi: 10.1021/ja405086e

    18. [18]

      Qiu, J. H.; Zhang, X. G.; Feng, Y.; Zhang, X. F.; Wang, H. T.; Yao, J. F. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B 2018, 231, 317-342.  doi: 10.1016/j.apcatb.2018.03.039

    19. [19]

      Steinebrunner, D.; Schnurpfeil, G.; Kohröde, M.; Epp, A.; Klangnog, K.; Tapia Burgos, J. A.; Wichmann, A.; Wöhrle, D.; Wittstock, A. Impact of photosensitizer orientation on the distance dependent photocatalytic activity in zinc phthalocyanine-nanoporous gold hybrid systems. RSC Adv. 2020, 10, 23203-23211.  doi: 10.1039/D0RA03891A

    20. [20]

      Bao, Y. L.; Yu, H. Y.; Zhang, Y.; Chen, L. Comparative study of two poly(amino acid)-based photosensitizer-delivery systems for photodynamic therapy. Int. J. Biol. Macromol. 2021, 169, 153-160.  doi: 10.1016/j.ijbiomac.2020.12.019

    21. [21]

      Mack, J.; Kobayashi, N. Low symmetry phthalocyanines and their analogues. Chem. Rev. 2011, 111, 281-321.  doi: 10.1021/cr9003049

    22. [22]

      Ke, M. R.; Huang, J. D.; Weng, S. M. Comparison between non-peripherally and peripherally tetra-substituted zinc(II) phthalocyanines as photosensitizers: synthesis, spectroscopic, photochemical and photobiological properties. J. Photochem. Photobiol. A 2009, 201, 23-31.  doi: 10.1016/j.jphotochem.2008.09.011

    23. [23]

      Haruhiko, T.; Shojiro, S.; Shinsaku, S. Synthesis of metallophthalocyanines from phthalonitrile with strong organic bases. Chem. Lett. 1983, 12, 313-316.  doi: 10.1246/cl.1983.313

    24. [24]

      Metz, J.; Schneider, O.; Hanack, M. Synthesis and properties of substituted (phthalocyaninato)-iron and -cobalt compounds and their pyridine adducts. Inorg. Chem. 1984, 23, 1065-1071.  doi: 10.1021/ic00176a014

    25. [25]

      Kantekin, H.; Yalazan, H.; Kahriman, N.; Ertem, B.; Serdaroğlu, V.; Pişkin, M.; Durmuş, M. New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: design, synthesis, spectroscopic characterization, photochemistry and photophysics. J. Photochem. Photobiol. A 2018, 361, 1-11.  doi: 10.1016/j.jphotochem.2018.04.034

    26. [26]

      Köksoy, B.; Durmuş, M.; Bulut, M. Tetra- and octa-[4-(2-hydroxyethyl)phenoxy bearing novel metal-free and zinc(II) phthalocyanines: synthesis, characterization and investigation of photophysicochemical properties. J. Lumin. 2015, 161, 95-102.  doi: 10.1016/j.jlumin.2014.12.044

    27. [27]

      Hu, Z. H.; Tao, C. A.; Liu, H. P.; Zou, X. R.; Zhu, H.; Wang, J. F. Fabrication of an NH2-MIL-88B photonic film for naked-eye sensing of organic vapors. J. Mater. Chem. A 2014, 2, 14222-6.  doi: 10.1039/C4TA01916D

    28. [28]

      Feng, J. J.; Wang, H. Q.; Ma, Z. F. Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Microchim. Acta 2020, 187, 95-8.  doi: 10.1007/s00604-019-4075-4

    29. [29]

      Spiller, W.; Kliesch, H.; Wöhrle, D.; Hackbarth, S.; Röder, B.; Schnurpfeil, G. Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyr. Phthalocyanines 1998, 2, 145-158.  doi: 10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2

    30. [30]

      Entradas, T.; Waldron, S.; Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B 2020, 204, 111787-11.  doi: 10.1016/j.jphotobiol.2020.111787

    31. [31]

      Wu, Z. W.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B. X.; Guo, Q. R.; Guan, G. F. Fabrication of magnetic NH2-MIL-88B (Fe) confined brønsted ionic liquid as an efficient catalyst in biodiesel synthesis. Energy Fuels 2016, 30, 10739-10746.  doi: 10.1021/acs.energyfuels.6b01212

    32. [32]

      Kockrick, E.; Lescouet, T.; Kudrik, E. V.; Sorokin, A. B.; Farrusseng, D. Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin. Chem. Commun. 2011, 47, 1562-1564.  doi: 10.1039/C0CC04431H

    33. [33]

      Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng, X.; Müllen, K. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J. Am. Chem. Soc. 2009, 131, 7216-7217.  doi: 10.1021/ja902116f

    34. [34]

      Xu, C. H.; Bao, M. J.; Ren, J. W.; Zhang, Z. G. NH2-MIL-88B (FeαIn1-α) mixed-MOFs designed for enhancing photocatalytic Cr(vi) reduction and tetracycline elimination. RSC Adv. 2020, 10, 39080-39086.  doi: 10.1039/D0RA07487J

    35. [35]

      Li, X. H.; Guo, W. L.; Liu, Z. H.; Wang, R. Q.; Liu, H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J. Hazard. Mater. 2017, 324, 665-672.  doi: 10.1016/j.jhazmat.2016.11.040

    36. [36]

      Lu, H.; Zhang, H. K.; Wang, J.; Zhou, J. T.; Zhou, Y. A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological acid yellow 36 reduction. RSC Adv. 2014, 4, 47297-47303.  doi: 10.1039/C4RA08817D

    37. [37]

      Steinebrunner, D.; Schnurpfeil, G.; Wichmann, A.; Woehrle, D.; Wittstock, A. Synergistic effect in zinc phthalocyanine-nanoporous gold hybrid materials for enhanced photocatalytic oxidations. Catalysts 2019, 9, 555-14.  doi: 10.3390/catal9060555

    38. [38]

      Lei, Z. D.; Xue, Y. C.; Chen, W. Q.; Li, L.; Qiu, W. H.; Zhang, Y.; Tang, L. The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B(Fe) and the photocatalytic activities. Small 2018, 14, 1802045-8.  doi: 10.1002/smll.201802045

    39. [39]

      Jia, X.; Ye, H. N.; Weng, H. L.; Huang, N.; Yu, Y.; Xue, J. P. Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. Mater. Sci. Eng. C 2019, 104, 109849-8.  doi: 10.1016/j.msec.2019.109849

    40. [40]

      Dhami, S.; Phillips, D. Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles. J. Photochem. Photobiol. A 1996, 100, 77-84.  doi: 10.1016/S1010-6030(96)04438-3

    41. [41]

      Li, M.; Sun, W.; Tian, R. S.; Cao, J. F.; Tian, Y.; Gurram, B.; Fan, J. L.; Peng, X. J. Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials 2021, 269, 120532-12.  doi: 10.1016/j.biomaterials.2020.120532

    42. [42]

      Zhang, X. F.; Guo, W. F. Indole substituted zinc phthalocyanine: improved photosensitizing ability and modified photooxidation mechanism. J. Photochem. Photobiol. A 2011, 225, 117-124.  doi: 10.1016/j.jphotochem.2011.10.008

    43. [43]

      Wang, Y. X.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z. X.; Nie, S. X.; Zhao, Z. X. Defect engineering of NH2-MIL-88B (Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation. Chem. Eng. J. 2020, 398, 125684-12.

    44. [44]

      Zhou, Y. Z.; Zhang, Y. C.; Li, Z. L.; Hao, C. T.; Wang, Y.; Li, Y.; Dang, Y.; Sun, X. Q.; Han, G. P.; Fu, Y. L. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: treatment of organic wastewater and catalytic principle. Chemosphere 2020, 259, 127463-12.  doi: 10.1016/j.chemosphere.2020.127463

    45. [45]

      Li, Y. Z.; Huangfu, C.; Du, H. J.; Liu, W. B.; Li, Y. W.; Ye, J. S. Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis. J. Electroanal. Chem. 2013, 709, 65-69.  doi: 10.1016/j.jelechem.2013.09.017

    46. [46]

      Maruthupandy, M.; Muneeswaran, T.; Anand, M.; Quero, F. Highly efficient multifunctional graphene/chitosan/magnetite nanocomposites for photocatalytic degradation of important dye molecules. Int. J. Biol. Macromol. 2020, 153, 736-746.  doi: 10.1016/j.ijbiomac.2020.03.045

    47. [47]

      Zhao, H. M.; Zhang, T. T.; Shan, D. Y.; Zhu, Y.; Gao, G.; Liu, Y.; Liu, J.; Liu, M. Y.; You, W. S. ZnIn2S4/In(OH)3 hollow microspheres fabricated by one-step l-cysteine-mediated hydrothermal growth for enhanced hydrogen production and MB degradation. Int. J. Hydrog. Energy 2020, 45, 13975-13984.  doi: 10.1016/j.ijhydene.2020.03.104

    48. [48]

      Xing, R.; Wu, P.; Wu, L.; Fei, Z. H. Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and bisphenol a degradation under visible light irradiation. J. Environ. Sci. 2013, 25, 1687-1695.  doi: 10.1016/S1001-0742(12)60216-2

    49. [49]

      Daneshvar, H.; Seyed Dorraji, M. S.; Amani-Ghadim, A. R.; Rasoulifard, M. H. Enhanced sonocatalytic performance of ZnTi nano-layered double hydroxide by substitution of Cu(II) cations. Ultrason. Sonochem. 2019, 58, 104632-9.  doi: 10.1016/j.ultsonch.2019.104632

    50. [50]

      Jorfi, S.; Kakavandi, B.; Motlagh, H. R.; Ahmadi, M.; Jaafarzadeh, N. A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate. Appl. Catal. B 2017, 219, 216-230.  doi: 10.1016/j.apcatb.2017.07.035

    51. [51]

      Kavitha, M. K.; Pillai, S. C.; Gopinath, P.; John, H. Hydrothermal synthesis of ZnO decorated reduced graphene oxide: understanding the mechanism of photocatalysis. J. Environ. Chem. Eng. 2015, 3, 1194-1199.  doi: 10.1016/j.jece.2015.04.013

    52. [52]

      Zhang, Z. C.; He, D. Y.; Liu, H. Y.; Ren, M.; Zhang, Y. N.; Qu, J.; Lu, N.; Guan, J. N.; Yuan, X. Synthesis of graphene/black phosphorus hybrid with highly stable P–C bond towards the enhancement of photocatalytic activity. Environ. Pollut. 2019, 245, 950-956.  doi: 10.1016/j.envpol.2018.11.090

    53. [53]

      Ochsner, M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B 1997, 39, 1-18.  doi: 10.1016/S1011-1344(96)07428-3

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    9. [9]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(1)
  • Abstract views(287)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return