Citation: Gao-Peng LI, Zhen-Zhen LI, Hong-Fang XIE, Yun-Long FU, Yao-Yu WANG. Efficient C2 Hydrocarbons and CO2 Adsorption and Separation in a Multi-site Functionalized MOF[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 1047-1054. doi: 10.14102/j.cnki.0254–5861.2011–3094 shu

Efficient C2 Hydrocarbons and CO2 Adsorption and Separation in a Multi-site Functionalized MOF

  • Corresponding author: Yun-Long FU, yunlongfu@sxnu.edu.cn Yao-Yu WANG, wyaoyu@nwu.edu.cn
  • ② These authors contributed equally to this work
  • Received Date: 12 January 2021
    Accepted Date: 8 March 2021

    Fund Project: the National Natural Science Foundation of China 21971207

Figures(6)

  • A multi-site functionalized microporous metal-organic framework (MOF), H[Zn2(BDP)0.5(ATZ)3]·0.5H2O·0.5DMF (1), was synthesized through mixed ligands strategy. The pore surface of complex 1 was modified by uncoordinated carboxylate O atoms, phenyl and pyridyl rings as well as -NH2 groups, which strengthen interactions with C2H6, C2H4 and CO2 molecules and lead to efficiently selective C2H6, C2H4 and CO2 uptake over CH4. The selective adsorption mechanism was discussed deeply based on Grand Canonical Monte Carlo (GCMC) simulations. It is expected that this study will provide a new perspective for the rational design and synthesis of MOFs with efficient gas adsorption and separation performance.
  • 加载中
    1. [1]

      Zhang, J. W.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Zhai, Q. G. Design of highl connected Cd-tetrazolate-dicarboxylate frameworks with enhanced CO2/CH4 and C2 hydrocarbons/CH4 separation performance. Cryst. Growth Des. 2016, 16, 6430–6435.  doi: 10.1021/acs.cgd.6b01097

    2. [2]

      Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.  doi: 10.1039/C8CS00688A

    3. [3]

      Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189–35.  doi: 10.1002/adma.201705189

    4. [4]

      Wang, D.; Zhao, T.; Cao, Y.; Yao, S.; Li, G.; Huo, Q.; Liu, Y. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units. Chem. Commun. 2014, 50, 8648–8650.  doi: 10.1039/C4CC03729D

    5. [5]

      Hao, H. G.; Zhao, Y. F.; Chen, D. M.; Yu, J. M.; Tan, K.; Ma, S.; Chabal, Y.; Zhang, Z. M.; Dou, J. M.; Xiao, Z. H.; Day, G.; Zhou, H. C.; Lu, T. B. Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H2 in a robust metal-organic framework for the purification of C2H4. Angew. Chem. Int. Ed. 2018, 57, 16067–16071.  doi: 10.1002/anie.201809884

    6. [6]

      Jiang, L.; Wu, N.; Li, Q.; Li, J.; Wu, D.; Li, Y. Heterometallic strategy for enhancing the dynamic separation of C2H2/CO2: a linear pentanuclear cluster-based metal-organic framework. Inorg. Chem. 2019, 58, 4080–4084.  doi: 10.1021/acs.inorgchem.9b00298

    7. [7]

      Tian, J. W.; Wu, Y. P.; Li, Y. S.; Wei, J. H.; Yi, J. W.; Li, S.; Zhao, J.; Li, D. S. Integration of semiconductor oxide and a microporous (3, 10)-connected Co6-based metal-organic framework for enhanced oxygen evolution reaction. Inorg. Chem. 2019, 58, 5837–5843.  doi: 10.1021/acs.inorgchem.9b00202

    8. [8]

      Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F. X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565.  doi: 10.1039/C8CS00337H

    9. [9]

      Huang, D.; Wu, X.; Tian, J.; Wang, X.; Zhou, Z.; Li, D. Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: syntheses, crystal structure and catalytic degradation of nitrophenol. Chin. Chem. Lett. 2018, 19, 845–848.

    10. [10]

      Bai, D.; Wang, Y.; He, M.; Gao, X.; He, Y. Structural diversities and gas adsorption properties of a family of rod-packing lanthanide-organic frameworks based on cyclotriphosphazene-functionalized hexacarboxylate derivatives. Inorg. Chem. Front. 2018, 5, 2227–2237.  doi: 10.1039/C8QI00575C

    11. [11]

      Kan, L.; Li, G.; Liu, Y. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 luster-based metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 18642–18649.  doi: 10.1021/acsami.0c04538

    12. [12]

      Li, J.; Bhatt, P. M.; Li, J.; Eddaoudi, M.; Liu, Y. Recent progress on microfine design of metal-organic frameworks: structure regulation and gas sorption and separation. Adv. Mater. 2020, 32, 2002563–19.  doi: 10.1002/adma.202002563

    13. [13]

      Li, Q.; Wu, N.; Li, J.; Wu, D.; Li, Y. Amino-functionalized water-stable metal-organic framework for enhanced C2H2/CH4 separation performance. Inorg. Chem. 2020, 59, 2631–2635.  doi: 10.1021/acs.inorgchem.9b03295

    14. [14]

      Huang, Y. L.; Qiu, P. L.; Zeng, H.; Liu, H.; Luo, D.; Li, Y. Y.; Lu, W.; Li, D. Tuning the C2/C1 hydrocarbon separation performance in a BioMOF by surface functionalization. Eur. J. Inorg. Chem. 2019, 39–40, 4205–4210.

    15. [15]

      Liu, S.; Liu, B.; Yao, S.; Liu, Y. Post-synthetic metal-ion metathesis in a single-crystal-to-single-crystal process: improving the gas adsorption and separation capacity of an indium-based metal-organic framework. Inorg. Chem. Front. 2020, 7, 1591–1597.  doi: 10.1039/D0QI00078G

    16. [16]

      Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.  doi: 10.1021/jacs.0c00805

    17. [17]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    18. [18]

      Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    19. [19]

      He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493–6495.  doi: 10.1039/c2cc31792c

    20. [20]

      Guo, Z. J.; Yu, J.; Zhang, Y. Z.; Zhang, J.; Chen, Y.; Wu, Y.; Xie, L. H.; Li, J. R. Water-stable In(Ⅲ)-based metal-organic frameworks with rod-shaped secondary building units: single-crystal to single-crystal transformation and selective sorption of C2H2 over CO2 and CH4. Inorg. Chem. 2017, 56, 2188–2197.  doi: 10.1021/acs.inorgchem.6b02840

    21. [21]

      Li, J.; Chen, S.; Jiang, L.; Wu, D.; Li, Y. Pore space partitioning of metal-organic framework for C2Hx separation from methane. Inorg. Chem. 2019, 58, 5410–5413.  doi: 10.1021/acs.inorgchem.9b00550

    22. [22]

      Ding, Q. R.; Wang, F. A pillared-layer framework with high uptake and selective sorption of light hydrocarbons. Dalton Trans. 2016, 45, 7004–7007.  doi: 10.1039/C6DT00238B

    23. [23]

      Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Feng, Y.; He, Y. A porous lanthanide metal-organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption. CrystEngComm. 2016, 18, 6254–6261.  doi: 10.1039/C6CE00497K

    24. [24]

      Sim, J.; Yim, H.; Ko, N.; Choi, S. B.; Oh, Y.; Park, H. J.; Park, S.; Kim, J. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Trans. 2014, 43, 18017–18024.  doi: 10.1039/C4DT02300E

    25. [25]

      Xiong, Y.; Fan, Y. Z.; Yang, R.; Chen, S.; Pan, M.; Jiang, J. J.; Su, C. Y. Amide and N-oxide functionalization of T-shaped ligands for isoreticular MOFs with giant enhancements in CO2 separation. Chem. Commun. 2014, 50, 14631–14634.  doi: 10.1039/C4CC06697A

    26. [26]

      Haldar, R.; Reddy, S. K.; Suresh, V. M.; Mohapatra, S.; Balasubramanian, S.; Maji, T. K. Flexible and rigid amine-fnctionalized microporous frameworks based on different secondary building units: supramolecular isomerism, selective CO2 capture, and catalysis. Chem. Eur. J. 2014, 20, 4347–4356.  doi: 10.1002/chem.201303610

    27. [27]

      Li, G. P.; Liu, G.; Li, Y. Z.; Hou, L.; Wang, Y. Y.; Zhu, Z. Uncommon pyrazoyl-carboxyl bifunctional ligand-based microporous lanthanide systems: sorption and luminescent sensing properties. Inorg. Chem. 2016, 55, 3952–3959.  doi: 10.1021/acs.inorgchem.6b00217

  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    6. [6]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    16. [16]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(2)
  • Abstract views(342)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return