Citation: Xiong-Jian LI, Shui-Jin YANG. One-pot Synthesis and Formation Mechanism of Prisms-built VO2(M) with Hypersensitive Phase-transition Hysteresis[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 999-1004. doi: 10.14102/j.cnki.0254–5861.2011–3086 shu

One-pot Synthesis and Formation Mechanism of Prisms-built VO2(M) with Hypersensitive Phase-transition Hysteresis

  • Corresponding author: Xiong-Jian LI, li_xiongjian@163.com
  • Received Date: 4 January 2021
    Accepted Date: 8 February 2021

    Fund Project: the Hubei Provincial Department of Education B2020129Scientific Research Foundation HS2020RC021

Figures(4)

  • Prisms-built VO2(M) micro-nanostructures with narrow hysteresis width of 2.7 ℃ were successfully synthesized using V2O5-H2C2O4-H2O system by one-pot hydrothermal approach. The structure, composition, phase transition and optical properties were characterized by XRD, SEM, DSC, and variable-temperature UV-vis. The results revealed the prism had well-defined six facets and entire smooth surface with lengths of about 500 nm and thicknesses of around 100 nm. Several prisms were connected to each other through the apical growth. The prismatic VO2(M) showed excellent phase transition and optical switching properties that would be beneficial for highly sensitive electrical/optical devices or other applications. The possible formation mechanism of prismatic VO2(M) was proposed via time-dependent SEM images and XRD patterns. Furthermore, the influence of the amount of H2O on the final product was discussed in detail.
  • 加载中
    1. [1]

      Yu, W.; Li, S.; Huang, C. Phase evolution and crystal growth of VO2 nanostructures under hydrothermal reactions. RSC Adv. 2016, 6, 7113−7120.  doi: 10.1039/C5RA23898F

    2. [2]

      Zhang, L.; Xia, F.; Song, Z.; Webster, N. A. S.; Luo, H.; Gao, Y. Synthesis and formation mechanism of VO2 (A) nanoplates with intrinsic peroxidase-like activity. RSC Adv. 2015, 5, 61371−61379.  doi: 10.1039/C5RA11014A

    3. [3]

      Cao, C.; Gao, Y.; Luo, H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. J. Phys. Chem. C 2008, 112, 18810−18814.  doi: 10.1021/jp8073688

    4. [4]

      Qu, B. Y.; Liu, L.; Xie, Y.; Pan, B. C. Theoretical study of the new compound VO2 (D). Phys. Lett. A 2011, 375, 3474−3477.  doi: 10.1016/j.physleta.2011.08.004

    5. [5]

      Zhang, H.; Xiao, X.; Lu, X.; Chai, G.; Sun, Y.; Zhan, Y.; Xu, G. A cost-effective method to fabricate VO2(M) nanoparticles and films with excellent thermochromic properties. J. Alloys Compd. 2015, 636, 106−112.  doi: 10.1016/j.jallcom.2015.01.277

    6. [6]

      Wang, Y.; Chen, C. Facile growth of thermochromic VO2 nanostructures with greatly varied phases and morphologies. Inorg. Chem. 2013, 52, 2550−2555.  doi: 10.1021/ic302562j

    7. [7]

      Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small 2017, 13, 1701147.  doi: 10.1002/smll.201701147

    8. [8]

      Zhang, Y.; Li, W.; Fan, M.; Zhang, F.; Zhang, J.; Liu, X.; Zhang, H.; Huang, C.; Li, H. Preparation of W- and Mo-doped VO2(M) by ethanol reduction of peroxovanadium complexes and their phase transition and optical switching properties. J. Alloys Compd. 2012, 544, 30−36.  doi: 10.1016/j.jallcom.2012.07.093

    9. [9]

      Liang, S.; Shi, Q.; Zhu, H.; Peng, B.; Huang, W. One-step hydrothermal synthesis of W‑doped VO2(M) nanorods with a tunable phase-transition temperature for infrared smart windows. ACS Omega 2016, 1, 1139−1148.  doi: 10.1021/acsomega.6b00221

    10. [10]

      Powell, M. J.; Quesada-Cabrera, R.; Taylor, A.; Teixeira, D.; Papakonstantinou, I.; Palgrave, R. G.; Sankar, G.; Parkin, I. P. Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chem. Mater. 2016, 28, 1369−1376.  doi: 10.1021/acs.chemmater.5b04419

    11. [11]

      Liu, K.; Cheng, C.; Suh, J.; Tang-Kong, R.; Fu, D. Y.; Lee, S.; Zhou, J.; Chua, L. O.; Wu, J. Q. Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater. 2014, 26, 1746−1750.  doi: 10.1002/adma.201304064

    12. [12]

      Chen, S.; Liu, J.; Wang, L.; Luo, H.; Gao, Y. Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study. J. Phys. Chem. C 2014, 118, 18938−18944.  doi: 10.1021/jp5056842

    13. [13]

      Li, X.; Zhang, S.; Yang, L.; Li, X.; Chen, J.; Huang, C. A convenient way to reduce the hysteresis width of VO2 (M) nanomaterials. New J. Chem. 2017, 41, 15260−15267.  doi: 10.1039/C7NJ02632C

    14. [14]

      Guo, B.; Chen, L.; Shi, S.; Ishaq, A.; Wan, D.; Chen, Z.; Zhang, L.; Luo, H.; Gao, Y. Low temperature fabrication of thermochromic VO2 thin films by low-pressure chemical vapor deposition. RSC Adv. 2017, 7, 10798−10805.  doi: 10.1039/C6RA25071H

    15. [15]

      Li, X.; Yang, L.; Zhang, S.; Li, X.; Chen, J.; Huang, C. VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2 (M)⋅0.25H2O. Mate. Lett. 2018, 211, 308−311.  doi: 10.1016/j.matlet.2017.09.105

    16. [16]

      Li, M.; Wu, X.; Li, L.; Wang, Y.; Li, D.; Pan, J.; Li, S.; Sun, L.; Li, G. Defect-mediated phase transition temperature of VO2 (M) nanoparticles with excellent thermochromic performance and low threshold voltage. J. Mater. Chem. A 2014, 2, 4520−4523.  doi: 10.1039/c3ta14822j

    17. [17]

      Du, J.; Gao, Y.; Luo, H.; Kang, L.; Zhang, Z.; Chen, Z.; Cao, C. Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol. Energy Mater. Sol. Cells 2011, 95, 469−475.  doi: 10.1016/j.solmat.2010.08.035

    18. [18]

      Zhang, Y.; Huang, Y.; Zhang, J.; Wu, W.; Niu, F.; Zhong, Y.; Liu, X.; Liu, X.; Huang, C. Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO2 (A) and VO2 (M) with a rectangular cross section. Mater. Res. Bull. 2012, 47, 1978−1986.  doi: 10.1016/j.materresbull.2012.04.015

    19. [19]

      Ma, Y.; Zhou, H.; Zhu, J.; Ji, S.; Bao, S.; Li, R.; Jin, P. Synthesis of flake-like VO2(M) by annealing a novel (NH4)0.6V2O5 phase and its thermochromic characterization. Ceram. Int. 2016, 42, 16382−16386.  doi: 10.1016/j.ceramint.2016.07.030

    20. [20]

      Ji, S.; Zhao, Y.; Zhang, F.; Jin, P. Direct formation of single crystal VO2(R) nanorods by one-step hydrothermal treatment. J. Cryst. Growth 2010, 312, 282−286.  doi: 10.1016/j.jcrysgro.2009.10.026

    21. [21]

      Chen, R.; Miao, L.; Liu, C.; Zhou, J.; Cheng, H.; Asaka, T.; Iwamoto, Y.; Tanemura, S. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2. Sci. Rep-UK 2015, 5, 14087−14099.  doi: 10.1038/srep14087

    22. [22]

      Binions, R.; Hyett, G.; Piccirillo, C.; Parkin, I. P. Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties. J. Mater. Chem. 2007, 17, 4652−4660.  doi: 10.1039/b708856f

    23. [23]

      Liu, L.; Cao, F.; Yao, T.; Xu, Y.; Zhou, M.; Qu, B.; Pan, B.; Wu, C.; Wei, S.; Xie, Y. New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New J. Chem. 2012, 36, 619–625.  doi: 10.1039/C1NJ20798A

    24. [24]

      Li, M.; Wu, X.; Li, L.; Wang, Y.; Li, D.; Pan, J.; Li, S.; Sun, L.; Li, G. Defect-mediated phase transition temperature of VO2 (M) nanoparticles with excellent thermochromic performance and low threshold voltage. J. Mater. Chem. A 2014, 2, 4520−4523.  doi: 10.1039/c3ta14822j

    25. [25]

      Zhang, K. F.; Zhang, G. Q.; Liu, X.; Su, Z.; Li, H. Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 2006, 157, 528−532.  doi: 10.1016/j.jpowsour.2005.07.043

    26. [26]

      Song, Z.; Zhang, L.; Xia, F.; Webster, N. A. S.; Song, J.; Liu, B.; Luo, H.; Gao, Y. Controllable synthesis of VO2(D) and their conversion to VO2(M) nanostructures with thermochromic phase transition properties. Inorg. Chem. Front. 2016, 3, 1035−1042.  doi: 10.1039/C6QI00102E

    27. [27]

      Zhang, Y.; Fan, M.; Wu, W.; Hu, L.; Zhang, J.; Mao, Y.; Huang, C.; Liu, X. A novel route to fabricate belt-like VO2(M)@C core-shell structured composite and its phase transition properties. Mater. Lett. 2012, 71, 127−130.  doi: 10.1016/j.matlet.2011.12.061

    28. [28]

      Zhang, Y.; Zhang, J.; Zhang, X.; Mo, S.; Wu, W.; Niu, F.; Zhong, Y.; Liu, X.; Huang, C.; Liu, X. Direct preparation and formation mechanism of belt-like doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties. J. Alloys Compd. 2013, 570, 104−113.  doi: 10.1016/j.jallcom.2013.03.053

    29. [29]

      Zhang, Y.; Zhang, X.; Huang, Y.; Huang, C.; Niu, F.; Meng, C.; Tan, X. One-step hydrothermal conversion of VO2(B) into W-doped VO2(M) and its phase transition and optical switching properties. Solid State Commun. 2014, 180, 24−27.  doi: 10.1016/j.ssc.2013.10.028

    30. [30]

      Chen, Y.; Ma, S.; Li, X.; Zhao, X.; Cheng, X.; Liu, J. Preparation and microwave absorption properties of microsheets VO2(M). J. Alloys Compd. 2019, 791, 307−315.  doi: 10.1016/j.jallcom.2019.03.338

    31. [31]

      Guinneton, F.; Sauques, L.; Valmalette, J. C.; Cros F.; Gavarri, J. R. Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties. J. Phys. Chem. Solids 2001, 62, 1229−1238.  doi: 10.1016/S0022-3697(01)00013-0

  • 加载中
    1. [1]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    5. [5]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

    6. [6]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    7. [7]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    8. [8]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    9. [9]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    10. [10]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    11. [11]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    12. [12]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    13. [13]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    14. [14]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    15. [15]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    19. [19]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    20. [20]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(1)
  • Abstract views(260)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return