Citation: Long JIAO, Bin LEI, Le QU, Rui LI, Chun-Hua YAN, Hong LI. Consensus Hologram QSAR Model Studying on the Aqueous Hydroxyl Radical Oxidation Reaction Rate Constants of Organic Micropollutants[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 985-993. doi: 10.14102/j.cnki.0254–5861.2011–3083 shu

Consensus Hologram QSAR Model Studying on the Aqueous Hydroxyl Radical Oxidation Reaction Rate Constants of Organic Micropollutants

  • Corresponding author: Long JIAO, mop@xsyu.edu.cn
  • Received Date: 30 December 2020
    Accepted Date: 20 May 2021

    Fund Project: the National Natural Science Foundation of China 21775118Shaanxi Natural Science Basic Research Project 2018JM2018Youth Innovation Team of Shaanxi Universities 2019.21Young Outstanding Talent Support Program of Shaanxi Universities, Xi'an Shiyou University Youth Research and Innovation Team Construction Plan 2019QNKYCXTD17Xi'an Shiyou University Graduate Innovation and Practice Ability Training Project YCS19211016

Figures(2)

  • The combination of hologram quantitative structure-activity relationship (HQSAR) and consensus modeling was employed to study the quantitative structure-property relationship (QSPR) model for calculating the aqueous hydroxyl radical oxidation reaction rate constants (kOH) of organic micropollutants (OMPs). Firstly, individual HQSAR model were established by using standard HQSAR method. The optimal individual HQSAR model was obtained while setting the parameter of fragment distinction and fragment size to "B" and "3~6" respectively. Secondly, consensus HQSAR model was established by building the regression model between the kOH and the hologram descriptors with consensus partial least-squares (cPLS) approach. The obtained individual and consensus HQSAR model were validated with a randomly selected external test set. The result of external test set validation demonstrates that both individual and consensus HQSAR model are available for predicting the kOH of OMPs. Compared with the optimal individual HQSAR model, the established consensus HQSAR model shows higher prediction accuracy and robustness. It is shown that the combination of HQSAR and consensus modeling is a practicable and promising method for studying and predicting the kOH of OMPs.
  • 加载中
    1. [1]

      Tong, J. B.; Zhan, P.; Wang, X. S.; Wu, Y. J. Quionolone carboxylic acid derivatives as HIV-1 integrase inhibitors: docking-based HQSAR and topomer CoMFA analyses. J. Chemometr. 2017, 31, e2934‒13.  doi: 10.1002/cem.2934

    2. [2]

      Sun, J. Y.; He, Y. Q.; Du, H. R.; Liu, C. L.; Chen, A. Y.; Mei, H. In vitro anti-viral activities and structure-activity relationship studies of flavones and dihydroflavone derivatives as influenza virus potential neuraminidase inhibitors. Chin. J. Struct. Chem. 2015, 34, 1641‒1651.

    3. [3]

      Veríssimo, G. C.; Dutra, E. F. M.; Dias, A. L. T.; Fernandes, P. de. O.; Kronenberger, T.; Gomes, M. A.; Maltarollo, V. G. HQSAR and random forest-based QSAR models for anti-T. Vaginalis activities of nitroimidazoles derivatives. J. Mol. Graph. Model. 2019, 90, 180‒191.  doi: 10.1016/j.jmgm.2019.04.007

    4. [4]

      Cheng, Y. H.; Zhou, M.; Tung, C. H.; Ji, M. J.; Zhang, F. H. Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg. Med. Chem. Lett. 2010, 20, 3329‒3337.  doi: 10.1016/j.bmcl.2010.04.033

    5. [5]

      Sun, J. Y.; Wang, J. C.; Hu, M. QSAR and pharmacophore studies of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors using HQSAR, topomer CoMFA and CoMSIA. Chin. J. Struc. Chem. 2013, 32, 744‒750.

    6. [6]

      Tong, J. B.; Feng, Y.; Wang, T. H.; Wu, L. Y. Topomer CoMFA, HQSAR studies and molecular docking of 2, 5-diketopiperazine derivatives as oxytocin inhibitors. Chin. J. Struct. Chem. 2020, 39, 1385‒1394.

    7. [7]

      Jiao, L.; Wang, Y.; Qu, L.; Xue, Z. W.; Ge, Y. Q.; Liu, H. H.; Lei, B.; Gao, Q.; Li, M. K. Hologram QSAR study on the critical micelle concentration of Gemini surfactants. Colloid. Surface. A 2020, 586, 12422‒8.

    8. [8]

      Jiao, L.; Zhang, X. F.; Qin, Y. C.; Wang, X. F.; Li, H. Hologram QSAR study on the electrophoretic mobility of aromatic acids. Chemometr. Intell. Lab. Syst. 2016, 157, 202‒207.  doi: 10.1016/j.chemolab.2016.06.020

    9. [9]

      Zhao, X. H.; Wang, X. L.; Li Y. Combined HQSAR method and molecular docking study on genotoxicity mechanism of quinolones with higher genotoxicity. Environ. Sci. Pollut. Res. 2019, 26, 34830‒34853.  doi: 10.1007/s11356-019-06482-3

    10. [10]

      Yang, J. W.; Gu, W. W.; Li, Y. Biological enrichment prediction of polychlorinated biphenyls and novel molecular design based on 3D-QSAR/HQSAR associated with molecule docking. Biosci. Rep. 2019, 39, BSR20180409‒20.  doi: 10.1042/BSR20180409

    11. [11]

      Gadaleta, D.; Vuković, K.; Toma, C.; Lavado, G. J.; Karmaus, A. L.; Kamel, M.; Kleinstreuer, N.; Benfenati, E.; Roncaglioni, A. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J. Cheminformatics 2019, 11, 1‒16.  doi: 10.1186/s13321-018-0323-6

    12. [12]

      Li, Y. K.; Shao, X. G.; Cai, W. S. Partial least-squares regression method based on consensus modeling for quantitative analysis of near-infrared spectra. Chem. J. Chin. Univ. 2007, 28, 246‒249.

    13. [13]

      Ouyang, L. H.; Zhou, D. Q.; Ma, Y. Z.; Tu, Y. L. Ensemble modeling based on 0-1 programming in micro-manufacturing process. Comput. Ind. Eng. 2018, 123, 242‒253.  doi: 10.1016/j.cie.2018.06.020

    14. [14]

      Su, Z. Q.; Tong, W. D.; Shi, L. M.; Shao, X. G.; Cai, W. S. A partial least-squares based consensus regression method for the analysis of near-infrared complex spectral data of plant samples. Anal. Lett. 2006, 39, 2073‒2083.  doi: 10.1080/00032710600724088

    15. [15]

      Granitto, P. M.; Verdes, P. F.; Ceccatto, H. A. Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 2005, 163, 139‒162.  doi: 10.1016/j.artint.2004.09.006

    16. [16]

      Jin, H. P.; Pan, B.; Chen, X. G.; Qian, B. Ensemble just-in-time learning framework through evolutionary multi-objective optimization for soft sensor development of nonlinear industrial processes. Chemometr. Intell. Lab. Syst. 2019, 184, 153‒166.  doi: 10.1016/j.chemolab.2018.12.002

    17. [17]

      Li, W. Z.; Miao, W.; Cui, J. X.; Fang, C.; Su, S. T.; Li, H. Z.; Hu, L. H.; Lu, Y. H.; Chen, G. H. Efficient corrections for DFT noncovalent interactions based on ensemble learning models. J. Chem. Inf. Model. 2019, 59, 1849‒1857.  doi: 10.1021/acs.jcim.8b00878

    18. [18]

      Wert, E. C.; Rosario-Ortiz, F. L.; Snyder, S. A. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res. 2009, 43, 1005‒1014.  doi: 10.1016/j.watres.2008.11.050

    19. [19]

      Hoigne, J.; Bader, H. Ozonation of water: kinetics of oxidation of ammonia by ozone and hydroxyl radicals. Environ. Sci. Technol. 1978, 12, 79‒84.  doi: 10.1021/es60137a005

    20. [20]

      Gunten, U. V. Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443‒1467.  doi: 10.1016/S0043-1354(02)00457-8

    21. [21]

      Zimmermann, S. G.; Schmukat, A.; Schulz, M.; Benner, J.; Gunten, V.; Ternes, T. A. Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone. Environ. Sci. Technol. 2012, 46, 876‒884.  doi: 10.1021/es203348q

    22. [22]

      Ternes, T. A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003, 37, 1976‒1982.  doi: 10.1016/S0043-1354(02)00570-5

    23. [23]

      Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007, 41, 4373‒4382.  doi: 10.1016/j.watres.2007.06.038

    24. [24]

      Huber, M. M.; Gobel, A.; Joss, A.; Hermann, N.; Löffler, D.; McArdell, C. S.; Ried, A.; Siegrist, H.; Ternes, T. A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ. Sci. Technol. 2005, 39, 4290‒4299.  doi: 10.1021/es048396s

    25. [25]

      Hammes, F.; Salhi, E.; Köster, O.; Kaiser, H. P.; Egli, T.; von Gunten, U. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res. 2006, 40, 2275‒2286.  doi: 10.1016/j.watres.2006.04.029

    26. [26]

      Öberg, T. A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. Atmos. Environ. 2005, 39, 2189‒2200.  doi: 10.1016/j.atmosenv.2005.01.007

    27. [27]

      Li, X. H.; Zhao, W. X.; Li, J.; Jiang, J. Q.; Chen, J. J.; Chen, J. W. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures. Chemosphere 2013, 92, 1029‒1034.  doi: 10.1016/j.chemosphere.2013.03.040

    28. [28]

      Long, X.; Niu, J. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Chemosphere 2007, 67, 2028‒2034.  doi: 10.1016/j.chemosphere.2006.11.021

    29. [29]

      Yang, Z. H.; Luo, S.; Wei, Z. S.; Ye, T. T.; Spinney, R.; Chen, D.; Xiao, R. Y. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: a single-descriptor based QSAR and DFT study. Environ. Pollut. 2016, 211, 157‒164.  doi: 10.1016/j.envpol.2015.12.044

    30. [30]

      Toropov, A. A.; Toropova, A. P.; Rasulev, B. F.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical. J. Comput. Chem. 2012, 33, 1902‒1906.  doi: 10.1002/jcc.23022

    31. [31]

      Yu, X. L.; Yi, B.; Wang, X. Y.; Chen, J. F. Predicting reaction rate constants of ozone with organic compounds from radical structures. Atmos. Environ. 2012, 51, 124‒130.  doi: 10.1016/j.atmosenv.2012.01.037

    32. [32]

      Sudhakaran, S.; Calvin, J.; Amy, G. L. QSAR models for the removal of organic micropollutants in four different river water matrices. Chemosphere 2012, 87, 144‒150.  doi: 10.1016/j.chemosphere.2011.12.006

    33. [33]

      Lee, Y.; von Gunten, U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res. 2012, 46, 6177‒6195.  doi: 10.1016/j.watres.2012.06.006

    34. [34]

      Sudhakaran, S.; Amy, G. L. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Water Res. 2013, 47, 1111‒1122.  doi: 10.1016/j.watres.2012.11.033

    35. [35]

      Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49, 1669‒1678.  doi: 10.1021/ci900115y

    36. [36]

      Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 2011, 51, 2320‒2335.  doi: 10.1021/ci200211n

    37. [37]

      Bhhatarai, B.; Teetz, W.; Liu, T.; Öberg, T.; Jeliazkova, N.; Kochev, N.; Pukalov, O.; Tetko, I. V.; Kovarich, S.; Papa, E.; Gramatica, P. CADASTER QSPR models for predictions of melting and boiling points of perfluorinated chemicals. Mol. Inform. 2011, 30, 189‒204.  doi: 10.1002/minf.201000133

    38. [38]

      Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem. Inf. Model. 2012, 52, 2044‒2058.  doi: 10.1021/ci300084j

    39. [39]

      Tropsha, A.; Gramatica, P.; Gombar, V. K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol. Inform. 2003, 22, 69‒77.

    40. [40]

      Roy, K.; Mitra, I.; Kar, S.; Ojha, P. K.; Das, R. N.; Kabir, H. Comparative studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model. 2012, 52, 396‒408.  doi: 10.1021/ci200520g

    41. [41]

      Hurst, J. R.; Heritage, T. W. Patent, US005751605A 1998.

    42. [42]

      Hurst, J. R.; Heritage, T. W. Patent, US6208942B1 2001.

    43. [43]

      Zhang, C. Q.; Du, C. M.; Feng, Z. W.; Zhu, J. Y.; Li, Y. Y. HQSAR, docking, and molecular dynamics studies of inhibitors for CXCR4. Chem. Biol. Drug. Des. 2014, 85, 1877‒1880.

    44. [44]

      Guido, R. V. C.; Castilho, M. S.; Mota, S. G. R.; Oliva, G.; Andricopulo, A. D. Classical and hologram QSAR studies on a series of inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Mol. Inform. 2010, 27, 768‒781.

    45. [45]

      Yu, S. L.; Yuan, J. T.; Zhang, Y.; Gao, S. F.; Gan, Y.; Han, M.; Chen, Y. W.; Zhou, Q. Q.; Shi, J. H. Combined HQSAR, topomer CoMFA, homology modeling and docking studies on triazole derivatives as SGLT2 inhibitors. Future Med. Chem. 2017, 9, 847‒858.  doi: 10.4155/fmc-2017-0002

    46. [46]

      Muñoz-Gutiérrez, C.; Caballero, J.; Morales-Bayuelo, A. HQSAR and molecular docking studies of furanyl derivatives as adenosine A2A receptor antagonists. Med. Chem. Res. 2016, 25, 1‒13.  doi: 10.1007/s00044-015-1440-7

    47. [47]

      Cheng, Y. H.; Zhou, M.; Tung, C. H.; Ji, M. J.; Zhang, F. H. Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg. Med. Chem. Lett. 2010, 20, 3329‒3337.  doi: 10.1016/j.bmcl.2010.04.033

    48. [48]

      Flower, D. R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379‒386.  doi: 10.1021/ci970437z

    49. [49]

      Krogh, A.; Vedelsby, J. Neural network ensembles, Eross validation and active learning. Adv. Neural. Inform. Process. Syst. 1995, 7, 231‒238.

    50. [50]

      Bian, X. H.; Diwu, P. Y.; Liu, Y. R.; Liu, P. Ensemble calibration for the spectral quantitative analysis of complex samples. J. Chemometr. 2017, 32, e2940‒13.

    51. [51]

      Li, Y.; Jing, J. A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra. Chemometr. Intell. Lab. Syst. 2014, 130, 45‒49.  doi: 10.1016/j.chemolab.2013.10.005

  • 加载中
    1. [1]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    2. [2]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    3. [3]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    4. [4]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    5. [5]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    6. [6]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    7. [7]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    8. [8]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    9. [9]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    10. [10]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    11. [11]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    12. [12]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    13. [13]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    14. [14]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    15. [15]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    16. [16]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    17. [17]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    18. [18]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

Metrics
  • PDF Downloads(4)
  • Abstract views(287)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return