Citation: Ming-Yang LI, Jia-Yu LI, Miao-Miao WU, Xiao-Lin WANG. First-principles Study on the Properties of CaO(100) Surface Adsorbing Carbon Dioxide[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 973-984. doi: 10.14102/j.cnki.0254–5861.2011–3072 shu

First-principles Study on the Properties of CaO(100) Surface Adsorbing Carbon Dioxide

  • Corresponding author: Miao-Miao WU, miaomwu@cumtb.edu.cn
  • Received Date: 21 December 2020
    Accepted Date: 6 April 2021

    Fund Project: the National Key Research and Development Program of China 2017YFB0601904National Natural Science Foundation of China 11404395The Fundamental Research Funds for the Central Universities 2013QJ01

Figures(8)

  • The increasing carbon dioxide emissions have a huge impact on the global environment. Carbonation reaction of CaO is regarded as a potential method to capture carbon dioxide. The density functional theory calculations have been performed to investigate the adsorption of CO2 on CaO(100) surface. This paper systematically studied the adsorption of CO2 at different adsorption sites on CaO(100) surface and the influence of adsorption angle on adsorption energy. Based on the studying of adsorption sites, adsorption energy and electronic structure of the CO2/CaO(100) systems, chemical adsorption mainly happens when CO2 molecules are absorbed on the CaO(100) surfaces, but physical adsorption may also happen. The research found that CO2 molecules reacted with surface O atom through C, forming monodentate surface carbonate species and tridentate carbonate. Among them, low-coordinated monodentate ligands have a higher stability than tridentate ligands due to the shorter C–OS bond length of monodentate ligands.
  • 加载中
    1. [1]

      Guiot, J.; Cramer, W. Climate change: the 2015 Paris agreement thresholds and Mediterranean basin ecosystems. Science 2016, 354, 465−468.  doi: 10.1126/science.aah5015

    2. [2]

      Wei, J.; Ge, Q.; Yao, R.; Wen, Z.; Fang, C.; Guo, L.; Xu, H.; Sun, J. Directly converting CO2 into a gasoline fuel. Nat. Commun. 2017, 8, 15174.  doi: 10.1038/ncomms15174

    3. [3]

      Groenigen, K.; Qi, X.; Osenberg, C. W.; Luo, Y.; Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 2014, 344, 508−519.  doi: 10.1126/science.1249534

    4. [4]

      Michl, J. Photochemical CO2 reduction: towards an artificial leaf. Nat. Chem. 2011, 3, 268−269.  doi: 10.1038/nchem.1021

    5. [5]

      Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 2011, 3, 609−614.  doi: 10.1038/nchem.1089

    6. [6]

      Richardson, R. D.; Holland, E. J.; Carpenter, B. K. A renewable amine for photochemical reduction of CO2. Nat. Chem. 2011, 3, 301−310.  doi: 10.1038/nchem.1000

    7. [7]

      Meng, X.; Wang, T.; Liu, L.; Ouyang, S. X.; Ye, J. H. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 2014, 126, 11478−11482.

    8. [8]

      Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2015, 42, 1797−1801.

    9. [9]

      Ahlers, S. J.; Bentrup, U.; Linke, D.; Kondratenko, E. V. An innovative approach for highly selective direct conversion of CO2 into propanol using C2H4 and H2. Chemsuschem. 2014, 7, 2631−2639.  doi: 10.1002/cssc.201402212

    10. [10]

      Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; Xie, S. H.; He, H. Y.; Cao, Y. Partially reduced iridium oxide clusters dispersed on titania as efficient catalysts for facile synthesis of dimethylformamide from CO2, H2 and dimethylamine. Chem. Commun. 2014, 50, 9138−9140.  doi: 10.1039/C4CC02973A

    11. [11]

      Liu, X. H.; Ma, J. G.; Niu, Z.; Yang, G.; Cheng, P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem. Int. Ed. 2015, 54, 988−991.  doi: 10.1002/anie.201409103

    12. [12]

      Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313−315.  doi: 10.1126/science.1177981

    13. [13]

      Yaumi, A. L.; Bakar, M. Z.; Hameed, B. H. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 2017, 124, 461−480.  doi: 10.1016/j.energy.2017.02.053

    14. [14]

      Manovic, V.; Anthony, E. J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environ. Sci. Technol. 2008, 42, 4170−4174.  doi: 10.1021/es800152s

    15. [15]

      Eric, B.; Gontrand, L.; Cornelius, S. Corrigendum to: "the decrease of carbonation efficiency of CaO along calcination-carbonation cycles: experiments and modelling". Chem. Eng. Sci. 2010, 64, 2136−2146.

    16. [16]

      Pacchioni, G.; Ricart, J. M.; Illas, F. Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO (100) surfaces. A theoretical measure of oxide basicity. J. Am. Chem. Soc. 1994, 116, 10152−10158.  doi: 10.1021/ja00101a038

    17. [17]

      Karlsen, E. J.; Nygren, M. A.; Pettersson, L. G. M. Comparative study on structures and energetics of NOx, SOx, and COx adsorption on alkaline-earth-metal oxides. J. Phys. Chem. B 2003, 107, 7795−7802.  doi: 10.1021/jp0346716

    18. [18]

      Schneider, W. F. Qualitative differences in the adsorption chemistry of acidic (CO2, SOx) and amphiphilic (NOx) species on the alkaline earth oxides. J. Phys. Chem. B 2015, 108, 273−282.

    19. [19]

      Jensen, M. B.; Pettersson, L. G.; Swang, O.; Olsbye, U. CO2 sorption on MgO and CaO surfaces: a comparative quantum chemical cluster study. J. Phys. Chem. B 2005, 109, 16774−16781.  doi: 10.1021/jp052037h

    20. [20]

      And, E. K.; Burghaus, U. Adsorption kinetics and dynamics of CO, NO, and CO2 on reduced CaO (100). J. Phys. Chem. C 2008, 112, 7390−7400.  doi: 10.1021/jp800755q

    21. [21]

      Voigts, F.; Bebensee, F.; Dahle, S.; Volgmann, K.; Maus-Friedrichs, W. The adsorption of CO2, and CO on Ca and CaO films studied with MIES, UPS and XPS. Sur. Sci. 2009, 603, 40−49.  doi: 10.1016/j.susc.2008.10.016

    22. [22]

      Besson, R.; Vargas, M, R.; Favergeon, L. CO2, adsorption on calcium oxide: an atomic-scale simulation study. Sur. Sci. 2012, 606, 490−495.  doi: 10.1016/j.susc.2011.11.016

    23. [23]

      Zhang, Y.; Hu, J. M.; Cao, Q. Z.; Cao, Q. Z.; Qiu, M.; Yi, L.; Huang, X.; Zhang, Y. F. Density functional theory studies on the adsorption of CO2 on different CaO surfaces. Chin. J. Struct. Chem. 2013, 32, 1715−1723.

    24. [24]

      Zhao, B. F.; Wang, J. W.; Zhu, D.; Song, G.; Yang, H. J.; Chen, L.; Sun, L. Z.; Yang, S. X.; Guan, H. B.; Xie, X. P. Adsorption characteristics of gas molecules (H2O, CO2, CO, CH4, and H2) on CaO-based catalysts during biomass thermal conversion with in situ CO2 capture. Catalysts 2019, 9, 757−766.  doi: 10.3390/catal9090757

    25. [25]

      Wang, W. J.; Fan, L. L.; Wang, G. P.; Li, Y. H. CO2 and SO2 sorption on the alkali metals doped CaO(100) surface: a DFT-D study. Appl. Surf. Sci. 2017, 425, 972−977.  doi: 10.1016/j.apsusc.2017.07.158

    26. [26]

      Hammami, R.; Dhouib, A.; Fernandez, S.; Minot, C. CO2 adsorption on (001) surfaces of metal monoxides with rock-salt structure. Catal. Today 2008, 139, 227−233.  doi: 10.1016/j.cattod.2008.08.036

    27. [27]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci. 1996, 6, 15−50.  doi: 10.1016/0927-0256(96)00008-0

    28. [28]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758−1775.

    29. [29]

      Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953−17979.  doi: 10.1103/PhysRevB.50.17953

    30. [30]

      Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. Condens. Matter. 1993, 46, 6671−6687.

    31. [31]

      Skorodumova, N. V.; Hermansson, K.; Johansson, B. Structural and electronic properties of the (100) surface and bulk of alkaline-earth metal oxides. Phys. Rev. B. Condens. Matter. 2005, 72, 1254141−1254147.

    32. [32]

      Broqvist, P.; Grönbeck, H.; Panas, I. Surface properties of alkaline earth metal oxides. Sur. Sci. 2004, 554, 262−271.  doi: 10.1016/j.susc.2004.02.014

    33. [33]

      Bajdich, M.; NØrskov, J. K.; Vojvodic, A. Surface energetics of alkaline-earth metal oxides: trends in stability and adsorption of small molecules. Eprint. Arxiv. 2015, 91, 1−10.

    34. [34]

      Cornu, D.; Guesmi, H.; Krafft, J. M.; Lauron-Pernot, H. Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J. Phys. Chem. C 2012, 116, 6645–6654.

    35. [35]

      Huygh, S.; Bogaerts, A.; Neyts, E. C. How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). Conserv. Physiol. 2015, 3, 151−157.

    36. [36]

      Sun, Z.; Wang, J.; Du, W.; Lu, G. M.; Li, P.; Song, X. F.; Yu, J. G. Density functional theory study on the thermodynamics and mechanism of carbon dioxide capture by CaO and CaO regeneration. Rsc. Adv. 2016, 6, 39460−39468.  doi: 10.1039/C6RA05152A

    37. [37]

      Penninger, M. W.; Chang, H. K.; Thompson, L. T.; Schneider, W. F. DFT analysis of NO oxidation intermediates on undoped and doped LaCoO3 perovskite. J. Phys. Chem. C 2015, 119, 20488−20494.  doi: 10.1021/acs.jpcc.5b06351

    38. [38]

      Momma, K.; Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653−658.  doi: 10.1107/S0021889808012016

    39. [39]

      Logsdail, A. J.; Mora-Fonz, D.; Catkiw, C. R. A.; Scanlon, D. O.; Sokol, A. A. Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Sur. Sci. 2015, 642, 58−65.  doi: 10.1016/j.susc.2015.06.012

    40. [40]

      Liu, X.; Shi, J.; He, L.; Ma, X.; Xu, S. Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature. Chin. J. Chem. Eng. 2016, 25, 572−580.

    41. [41]

      Hahn, K. R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J. Coverage effect of the CO2 adsorption mechanisms on CeO2(111) by first principles analysis. J. Phys. Chem. C 2013, 117, 1701−1711  doi: 10.1021/jp309565u

    42. [42]

      Solis, B. H.; Cui, Y.; Weng, X.; Seifert, J.; Freund, H. J. Initial stages of CO2 adsorption on CaO: a combined experimental and computational study. Phys. Chem. Chem. Phys. 2017, 19, 4231−4242.  doi: 10.1039/C6CP08504K

    43. [43]

      Tosoni, S.; Spinnato, D.; Pacchioni, G. DFT study of CO2 activation on doped and ultrathin MgO films. J. Phys. Chem. C 2015, 119, 27594−27602.  doi: 10.1021/acs.jpcc.5b10130

    44. [44]

      Mishra, A. K.; Roldan, A.; Leeuw, N. H. CuO surfaces and CO2 activation: a dispersion-corrected DFT+U study. J. Phys. Chem. C 2016, 120, 2198−2214.

    45. [45]

      Polfus, J. M.; Yildiz, B.; Tuller, H. L.; Bredesen, R. Adsorption of CO2 and facile carbonate formation on BaZrO3 surfaces. J. Phys. Chem. C 2018, 122, 307−314.  doi: 10.1021/acs.jpcc.7b08223

    46. [46]

      Hinojosa, J. A. Jr.; Antony, A.; Hakanoglu, C.; Asthagiri, A.; Weaver, J. F. Adsorption of CO2 on a PdO (101) thin film. J. Phys. Chem. C 2012, 116, 3007−3016.

    47. [47]

      Downing, C. A; Sokol, A. A.; Catlow, C. R. The reactivity of CO2 on the MgO (100) surface. Phys. Chem. Chem. Phys. 2013, 16, 184−195.

    48. [48]

      Preda, G.; Pacchioni, G.; Chiesa, M.; Giamello, E. Formation of CO2-radical anions from CO2 adsorption on an electron-rich MgO surface: a combined ab initio and pulse EPR study. J. Phys. Chem. C 2008, 112, 19568−19576.  doi: 10.1021/jp806049x

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    5. [5]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    8. [8]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    14. [14]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    17. [17]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    18. [18]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    19. [19]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    20. [20]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

Metrics
  • PDF Downloads(7)
  • Abstract views(406)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return