Citation: Shuang-Xi SHAO, Rui-Bai CANG, Ke YE, Yin-Yi GAO, Kai ZHU, Jun YAN, Gui-Ling WANG, Dian-Xue CAO. High Rate Performance of Aqueous Magnesium-iron-ion Batteries Based on Fe2O3@GH as the Anode[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 908-918. doi: 10.14102/j.cnki.0254–5861.2011–3063 shu

High Rate Performance of Aqueous Magnesium-iron-ion Batteries Based on Fe2O3@GH as the Anode

  • Corresponding author: Ke YE, yeke@hrbeu.edu.cn Dian-Xue CAO, caodianxue@hrbeu.edu.cn
  • ② These authors contributed equally to this work
  • Received Date: 10 December 2020
    Accepted Date: 7 January 2021

    Fund Project: the National Natural Science Foundation of China 51672056the Excellent Youth Project of the Natural Science Foundation of Heilongjiang Province YQ2019B002

Figures(8)

  • Aqueous Mg-ion batteries (MIBs) are safe, non-toxic and low-cost. Magnesium has a high theoretical specific capacity with its ion radius close to that of lithium. Therefore, aqueous magnesium ion batteries have great research advantages in green energy. To acquire the best electrode materials for aqueous magnesium ion batteries, it is necessary for the structural design in material. Fe2O3 is an anode material commonly used in Li-ion battery. However, the nano-cube Fe2O3 combined with graphene hydrogels (GH) can be successfully prepared and employed as an anode, which is seldom researched in the aqueous batteries system. The Fe2O3/GH is used as anode in the dual MgSO4 + FeSO4 aqueous electrolyte, avoiding the irreversible deintercalation of magnesium ions. In addition, the Fe element in anode material can form the Fe3+/Fe2+ and Fe2+/Fe3+ redox pairs in the MgSO4 + FeSO4 electrolyte. Thus, the reversible insertion/(de)insertion of magnesium and iron ions into/from the host anode material can be simultaneously achieved. After the initial charge, the anodic structure is changed to be more stable, avoiding the formation of MgO. The Fe2O3/GH demonstrates high rate properties and reversible capacities of 198, 151, 121, 80, 75 and 27 mAh g−1 at 50, 100, 200, 300, 500 and 1000 mA g−1 correspondingly.
  • 加载中
    1. [1]

      Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 2012, 213, 255–264.  doi: 10.1016/j.jpowsour.2012.04.018

    2. [2]

      Pang, G.; Yuan, C.; Nie, P.; Ding, B.; Zhu, J.; Zhang, X. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 2014, 6, 6328–6334.  doi: 10.1039/C3NR06730K

    3. [3]

      Ferg, E.; Gummow, R.; De, K. A. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 1994, 141, L147–L150.  doi: 10.1149/1.2059324

    4. [4]

      Sauvage, F.; Baudrin, E.; Tarascon, J. M. Study of the potentiometric response towards sodium ions of Na0.44-xMnO2 for the development of selective sodium ion sensors. Sensor. Actuat. B: Chem. 2007, 120, 638–644.  doi: 10.1016/j.snb.2006.03.024

    5. [5]

      An, Y.; Tian, Y.; Wei, C.; Jiang, H.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium-metal batteries. ACS Nano 2019, 13, 13690–13701.  doi: 10.1021/acsnano.9b06653

    6. [6]

      Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 2013, 3, 290–294.  doi: 10.1002/aenm.201200598

    7. [7]

      Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks C. E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem. 2014, 1, 871–876.  doi: 10.1002/celc.201300248

    8. [8]

      Yuan, C.; Zhang, Y.; Pan, Y.; Wang, G.; Cao, D. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 2014, 116, 404–412.  doi: 10.1016/j.electacta.2013.11.090

    9. [9]

      Wang, X.; Bommier, C.; Jian, Z.; Li, Z.; Chandrabose, R. S.; Rodriguez-Perez, I. A.; Greaney, P. A.; Ji, X. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 2017, 56, 2909–2913.  doi: 10.1002/anie.201700148

    10. [10]

      Zhu, C.; Han, T.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 1–8.

    11. [11]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Sun, H. C.; Kim, J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27, 3609–3620.  doi: 10.1021/cm504717p

    12. [12]

      Sha, L.; Liu, T.; Ye, K.; Zhu, K.; Yan, J.; Yin, J.; Wang, G.; Cao, D. A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis. J. Mater. Chem. A 2020, 8, 18055–18063.  doi: 10.1039/D0TA04944A

    13. [13]

      Luo, W.; Allen, M.; Raju, V.; Ji, X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 554–559.

    14. [14]

      Li, D.; Guo, W.; Li, Y.; Tang, Y.; Yan, J.; Meng, X.; Xia, M.; Gao, F.; Tunnel structured hollandite K0.06TiO2 microrods as the negative electrode for 2.4 V flexible all-solid-state asymmetric supercapacitors with high performance. J. Power Sources 2019, 413, 34–41.  doi: 10.1016/j.jpowsour.2018.11.088

    15. [15]

      Bančič, T.; Bitenc, J.; Pirnat, K.; Kopač, L. A.; Grdadolnik, J.; Randon, V. A.; Dominko, R. Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources 2018, 395, 25–30.  doi: 10.1016/j.jpowsour.2018.05.051

    16. [16]

      Ye, K.; Cao, A.; Shao, J.; Wang, G.; Si, R.; Ta, N.; Xiao, J.; Wang, G. Synergy effects on Sn–Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 2020, 65, 711–719.  doi: 10.1016/j.scib.2020.01.020

    17. [17]

      Cang, R.; Ye, K.; Shao, S.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg–Li batteries with excellent capacity. Chem. Eng. J. 2021, 405, 126783–126791.  doi: 10.1016/j.cej.2020.126783

    18. [18]

      Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2017, 2, 1115–1121.  doi: 10.1021/acsenergylett.7b00040

    19. [19]

      Bitenc, J.; Pirnat, K.; Mali, G.; Novosel, B.; Vitanova, A. R.; Dominko, R. Poly(hydroquinoyl-benzoquinonyl sulfide) as an active material in Mg and Li organic batteries. Electrochem. Commun. 2016, 69, 1–5.  doi: 10.1016/j.elecom.2016.05.009

    20. [20]

      Dong, X.; Guo, Z.; Guo, Z.; Wang, Y.; Xia, Y. Organic batteries operated at −70 ℃. Joule 2018, 2, 902–913.  doi: 10.1016/j.joule.2018.01.017

    21. [21]

      Zhang, H.; Ye, K.; Zhu, K.; Cang, R.; Yan, J.; Cheng, K.; Wang, G.; Cao, D. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode. Chem. Eur. J. 2017, 23, 17118–17126.  doi: 10.1002/chem.201703806

    22. [22]

      Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.; Bao, X. In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 2020, 59, 4814–4821.  doi: 10.1002/anie.201916538

    23. [23]

      Wang, F.; Fan, X.; Gao, T.; Sun, W.; Ma, Z.; Yang, C.; Han, F.; Xu, K.; Wang, C. High-voltage aqueous magnesium ion batteries. ACS Central Sci. 2017, 3, 1121–1128.  doi: 10.1021/acscentsci.7b00361

    24. [24]

      Tang, Y.; Chen, T.; Yu, S.; Qiao, Y.; Mu, S.; Hu, J.; Gao, F. Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J. Mater. Chem. A 2015, 3, 12913–12919.  doi: 10.1039/C5TA02480C

    25. [25]

      Wang, Y.; Cui, X.; Zhang, Y.; Zhang, L.; Gong, X.; Zheng, G. Energy storage: achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 2016, 28, 7626–7632.  doi: 10.1002/adma.201602583

    26. [26]

      Cang, R.; Ye, K.; Zhu, K.; Yan, J.; Yin, J.; Cheng, K.; Wang, G.; Cao, D. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery. J. Energy Chem. 2020, 45, 52–58.  doi: 10.1016/j.jechem.2019.09.026

    27. [27]

      Sha, L.; Ye, K.; Yin, J.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G.; Cao, D. In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation. Chem. Eng. J. 2020, 381, 122603–122611.  doi: 10.1016/j.cej.2019.122603

    28. [28]

      Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. An organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 2018, 30, 13–17.

    29. [29]

      Sha, L.; Ye, K.; Wang, G.; Shao, J.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G.; Cao, D. Rational design of NiCo2S4 nanowire arrays on nickel foam as highly efficient and durable electrocatalysts toward urea electrooxidation. Chem. Eng. J. 2019, 359, 1652–1658.  doi: 10.1016/j.cej.2018.10.225

    30. [30]

      Cang, R.; Zhao, C.; Ye, K.; Yin, J.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. Aqueous calcium-ion battery based on a mesoporous organic anode and a manganite cathode with long cycling performance. ChemSusChem. 2020, 13, 3911–3918.  doi: 10.1002/cssc.202000812

    31. [31]

      Rodríguez-Pérez, I. A.; Yuan, Y.; Bommier, C.; Wang, X.; Ma, L.; Leonard, D. P.; Lerner, M. M.; Carter, R. G.; Wu, T.; Greaney, A.; Lu, J.; Ji, X. Mg-ion battery electrode: an organic solid's herring bone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 2017, 139, 313–322.

    32. [32]

      Walter, M.; Kravchyk, K. V.; Bofer, C.; Widmer, R.; Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 2018, 30, 1705644–1705650.  doi: 10.1002/adma.201705644

    33. [33]

      Xie, J.; Rui, X.; Gu, P.; Wu, J.; Xu, Z.; Yan, Q.; Zhang, Q. Novel conjugated ladder-structured oligomer anode with high lithium storage and long cycling capability. ACS Appl. Mater. Inter. 2016, 8, 16932–16938.  doi: 10.1021/acsami.6b04277

    34. [34]

      Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792–1601814.  doi: 10.1002/aenm.201601792

    35. [35]

      Sun, X.; Duffort, V.; Mehdi, B. L. Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable mg-ion batteries. Chem. Mater. 2016, 28, 534–542.  doi: 10.1021/acs.chemmater.5b03983

    36. [36]

      Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Ohishi, K.; Okazawa, A.; Kojima, N.; Kurono, R.; Nishimura, S.; Yamada, A. Electrochemical Mg2+ intercalation into a bimetallic CuFe prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 2013, 1, 13055–13059.  doi: 10.1039/c3ta13205f

    37. [37]

      Pan, B.; Huang, J.; Feng, Z.; Li, Z.; He, M.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z.; Burrell, A. K.; Liao, C. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 2016, 6, 1600140–1600146.  doi: 10.1002/aenm.201600140

    38. [38]

      Liu, S.; Pan, G. L.; Yan, N. F.; Gao, X. P. Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions. Energy Environ. Sci. 2010, 3, 1732–1735.  doi: 10.1039/c0ee00170h

  • 加载中
    1. [1]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    2. [2]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    3. [3]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    7. [7]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    14. [14]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    19. [19]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    20. [20]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

Metrics
  • PDF Downloads(3)
  • Abstract views(213)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return