Citation: Wen-Wu FU, Ming ZHANG, Zhong-Rong SHEN. Mesh-liked Carbon Nanosheets Intercalated into Layered TiO2 as a Zero-strain Anode for Lithium-ion Storage[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 797-805. doi: 10.14102/j.cnki.0254–5861.2011–3054 shu

Mesh-liked Carbon Nanosheets Intercalated into Layered TiO2 as a Zero-strain Anode for Lithium-ion Storage

  • Corresponding author: Ming ZHANG, mingzhang@fjirsm.ac.cn Zhong-Rong SHEN, z-shen@fjirsm.ac.cn
  • Received Date: 4 December 2020
    Accepted Date: 15 January 2021

    Fund Project: the National Natural Science Foundation of China 21905282the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 20190016

Figures(7)

  • Volume change during the insertion/extraction of Li+ in electrode materials is an important issue to affect the safety and stability of Li-ion batteries. Here, we prepare a near-zero volume change material of COF derived mesh-liked carbon/TiO2 (MC/TiO2) composite by using a layered TiO2 as a template, and a two-dimensional COF material is inserted into the interlayers by the Schiff base polymerization between melamine and terephthalaldehyde, followed by carbonization at 500 ℃ to convert COF to mesh-liked carbon nanosheets. Due to the introduction of mesh-liked carbon nanosheets, the interlayer conductivity of TiO2 is improved, and the nanocavities in mesh-liked carbon nanosheets provide additional chambers for the insertion/extraction of Li-ions without any change of the interlayer distance. The MC/TiO2 shows a specific capacity of 472.7 mAh/g at a current density of 0.1 A/g, and good specific capacity retention of 65% remains after 1000 cycles at a current of 1 A/g.
  • 加载中
    1. [1]

      Koerver, R.; Zhang, W.; de Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142‒2158.  doi: 10.1039/C8EE00907D

    2. [2]

      Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31‒50.  doi: 10.1016/S0013-4686(99)00191-7

    3. [3]

      Zhang, S. L. Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. NPJ. Comput. Mater. 2017, 3, 7‒11.  doi: 10.1038/s41524-017-0009-z

    4. [4]

      Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071‒12.  doi: 10.1038/nenergy.2016.71

    5. [5]

      Tong, L.; Wang, P.; Chen, A.; Qiu, F.; Fang, W.; Yang, J.; Wang, C.; Yang, Y. Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries. Carbon 2019, 153, 592‒601.  doi: 10.1016/j.carbon.2019.07.067

    6. [6]

      Su, Q.; Zhang, J.; Wu, Y.; Du, G. Revealing the electrochemical conversion mechanism of porous Co3O4 nanoplates in lithium ion battery by in situ transmission electron microscopy. Nano Energy 2014, 9, 264‒272.  doi: 10.1016/j.nanoen.2014.08.006

    7. [7]

      Zhang, H.; Zhao, H.; Khan, M. A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 2018, 6, 20564‒20620.  doi: 10.1039/C8TA05336G

    8. [8]

      Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; Fan, H.; Qi, L.; Kushima, A.; Li, J. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515‒1520.  doi: 10.1126/science.1195628

    9. [9]

      Fedotov, S. S.; Luchinin, N. D.; Aksyonov, D. A.; Morozov, A. V.; Ryazantsev, S. V.; Gaboardi, M.; Plaisier, J. R.; Stevenson, K. J.; Abakumov, A. M.; Antipov, E. V. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun. 2020, 11, 1484‒11.  doi: 10.1038/s41467-020-15244-6

    10. [10]

      Liu, Y.; Yang, Y. Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 2016, 8123652‒15.

    11. [11]

      Gardecka, A. J.; Lübke, M.; Armer, C. F.; Ning, D.; Reddy, M. V.; Williams, A. S.; Lowe, A.; Liu, Z.; Parkin, I. P.; Darr, J. A. Nb-doped rutile titanium dioxide nanorods for lithium-ion batteries. Solid State Sci. 2018, 83, 115‒121.  doi: 10.1016/j.solidstatesciences.2018.07.004

    12. [12]

      Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243‒1295.  doi: 10.1021/acsnano.9b04365

    13. [13]

      Li, J.; Huang, J.; Li, J.; Cao, L.; Qi, H.; Cheng, Y. N-doped TiO2/rGO hybrids as superior Li-ion battery anodes with enhanced Li-ions storage capacity. J. Alloys Compd. 2019, 784, 165‒172.  doi: 10.1016/j.jallcom.2019.01.061

    14. [14]

      Yi, T. F.; Yang, S. Y.; Xie, Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5750‒5777.  doi: 10.1039/C4TA06882C

    15. [15]

      Kim, C.; Yu, Y. S.; Moyon, B.; Sirisopanaporn, C.; Richardson, T. J.; Cabana, J. Visualization of the phase propagation within carbon-free Li4Ti5O12 battery electrodes. J. Phys. Chem. C 2016, 120, 29030‒29038.  doi: 10.1021/acs.jpcc.6b11459

    16. [16]

      Yuan, T.; Tan, Z.; Ma, C.; Yang, J.; Ma, Z. F.; Zheng, S. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mat. 2017, 7, 1601625‒25.  doi: 10.1002/aenm.201601625

    17. [17]

      Deng, D. R.; Cui, X. Y.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. In-situ synthesis TiO2 nanosheets@rGO for ultrafast sodium ion storage at both room and low temperatures. J. Alloys Compd. 2020, 835, 155413‒7.  doi: 10.1016/j.jallcom.2020.155413

    18. [18]

      Liu, Q.; Hou, J.; Xu, C.; Chen, Z.; Qin, R.; Liu, H. TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries. Chem. Eng. J. 2020, 381, 122649‒9.  doi: 10.1016/j.cej.2019.122649

    19. [19]

      Sun, X.; Radovanovic, P. V.; Cui, B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J. Chem. 2015, 39, 38‒63.  doi: 10.1039/C4NJ01390E

    20. [20]

      Zhao, B.; Ran, R.; Liu, M.; Shao, Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. 2015, 98, 1‒71.  doi: 10.1016/j.mser.2015.10.001

    21. [21]

      Ghosh, S.; Kiran Kumar, V.; Kumar, S. K.; Biswas, S.; Martha, S. K. An insight of sodium-ion storage, diffusivity into TiO2 nanoparticles and practical realization to sodium-ion full cell. Electrochim. Acta 2019, 316, 69‒78.  doi: 10.1016/j.electacta.2019.05.109

    22. [22]

      Moitzheim, S.; Balder, J. E.; Poodt, P.; Unnikrishnan, S.; De Gendt, S.; Vereecken, P. M. Chlorine doping of amorphous TiO2 for increased capacity and faster Li+-ion storage. Chem. Mater. 2017, 29, 10007‒10018.  doi: 10.1021/acs.chemmater.7b03478

    23. [23]

      Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y. C.; Choi, Y. M.; Jung, Y. G.; Paik, U. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 2012, 6, 8308‒8315.  doi: 10.1021/nn303002u

    24. [24]

      Wang, Y.; Wu, M.; Zhang, W. F. Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 7863‒7868.  doi: 10.1016/j.electacta.2008.05.068

    25. [25]

      Cueto-Gómez, L. F.; Garcia-Gómez, N. A.; Mosqueda, H. A.; Sánchez, E. M. Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction. J. Appl. Electrochem. 2014, 44, 675‒682.  doi: 10.1007/s10800-014-0677-z

    26. [26]

      Farooq, U.; Ahmed, F.; Pervez, S. A.; Rehman, S.; Pope, M. A.; Fichtner, M.; Roberts, E. P. L. A stable TiO2-graphene nanocomposite anode with high rate capability for lithium-ion batteries. RSC Adv. 2020, 10, 29975‒29982.  doi: 10.1039/D0RA05300G

    27. [27]

      Bai, Y.; Yan, D.; Yu, C.; Cao, L.; Wang, C.; Zhang, J.; Zhu, H.; Hu, Y. S.; Dai, S.; Lu, J.; Zhang, W. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power Sources 2016, 308, 75‒82.  doi: 10.1016/j.jpowsour.2016.01.049

    28. [28]

      Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679‒6684.  doi: 10.1021/nl503378a

    29. [29]

      Li, X.; Wu, G.; Liu, X.; Li, W.; Li, M. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 2017, 31, 1‒8.  doi: 10.1016/j.nanoen.2016.11.002

    30. [30]

      Li, Y. T.; Chen, M. S.; Cheng, J. F.; Fu, W. W.; Hu, Y. J.; Liu, B. H.; Zhang, M.; Shen, Z. R. Two-dimensional layered ultrathin carbon/TiO2 nanosheet composites for superior pseudocapacitive lithium storage. Langmuir 2020, 36, 2255‒2263.  doi: 10.1021/acs.langmuir.9b03889

    31. [31]

      Fu, W. W.; Li, Y. T.; Chen, M. S.; Hu, Y. J.; Liu, B. H.; Zhang, K.; Zhan, C. Y.; Zhang, M.; Shen, Z. R. An orderly arrangement of layered carbon nanosheet/TiO2 nanosheet stack with superior artificially interfacial lithium pseudocapacity. J. Power Sources 2020, 468, 228363‒7.  doi: 10.1016/j.jpowsour.2020.228363

    32. [32]

      Chen, M. S.; Fu, W. W.; Hu, Y. J.; Chen, M. Y.; Chiou, Y. J.; Lin, H. M.; Zhang, M.; Shen, Z. R. Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery. Nanoscale 2020, 12, 16262‒16269.  doi: 10.1039/D0NR03962D

    33. [33]

      Hu, Y. J.; Li, Y. T.; Cheng, J. F.; Chen, M. S.; Fu, W. W.; Liu, B. H.; Zhang, M.; Shen, Z. R. Intercalation of carbon nanosheet into layered TiO2 grain for highly interfacial lithium storage. ACS Appl. Mater. Interfaces 2020, 12, 21709‒21719.  doi: 10.1021/acsami.0c03775

    34. [34]

      Cao, M.; Tao, L.; Lv, X.; Bu, Y.; Li, M.; Yin, H.; Zhu, M.; Zhong, Z.; Shen, Y.; Wang, M. Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. J. Power Sources 2018, 396, 327‒334.  doi: 10.1016/j.jpowsour.2018.06.012

    35. [35]

      Yin, J.; Yu, J.; Shi, X.; Kong, W.; Zhou, Z.; Man, J.; Sun, J.; Wen, Z. TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics. J. Colloid Interface Sci. 2021, 582, 874‒882.  doi: 10.1016/j.jcis.2020.08.076

    36. [36]

      Zukalová, M.; Kalbáč, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 2005, 17, 1248‒1255.  doi: 10.1021/cm048249t

    37. [37]

      Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109‒118.  doi: 10.1016/j.nanoen.2014.03.012

    38. [38]

      Lin, X.; Wang, Y.; Chai, W.; Liu, T.; Mou, J.; Liu, J.; Huang, J.; Liu, M. Solvothermal alcoholysis synthesis of hierarchically porous TiO2-carbon tubular composites as high-performance anodes for lithium-ion batteries. Electrochim. Acta 2019, 308, 253‒262.  doi: 10.1016/j.electacta.2019.04.052

    39. [39]

      John, W.; Julien, P.; James, L.; Bruce, D. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925‒14931.  doi: 10.1021/jp074464w

    40. [40]

      Torsten, B.; John, W.; Julien, P.; Bruce, D.; Sarah, H. T. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802‒1809.  doi: 10.1021/ja8057309

    41. [41]

      Veronica, A.; Jérémy, C.; Michael A, L.; Jong, W. K.; Pierre-Louis, T.; Sarah H, T.; Héctor D, A.; Patrice, S.; Bruce, D. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518‒522.  doi: 10.1038/nmat3601

  • 加载中
    1. [1]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    2. [2]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    9. [9]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    10. [10]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    17. [17]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    18. [18]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    19. [19]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    20. [20]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

Metrics
  • PDF Downloads(2)
  • Abstract views(322)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return