Citation: Xue-Min WU, Min-Min LIU, Hong-Xu GUO, Shao-Ming YING, Zhang-Xu CHEN. Polyoxovanadate-based MOFs Microsphere Constructed from 3-D Discrete Nano-sheets as Supercapacitor[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 994-998. doi: 10.14102/j.cnki.0254–5861.2011–3053 shu

Polyoxovanadate-based MOFs Microsphere Constructed from 3-D Discrete Nano-sheets as Supercapacitor

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn
  • Received Date: 3 December 2020
    Accepted Date: 7 April 2021

    Fund Project: the Natural Science Foundation of Fujian Province 2020J01803Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry FJKL_FBCM202004the Fujian Provincial Key Laboratory of Ecotoxicological Effects and Control of New Pollutants PY19001

Figures(5)

  • A novel polyoxovanadate-based MOFs microsphere, [Ni(phen)V2O7]·H2O (phen = 1, 10phenanthroline), constructed from 3-D discrete nano-sheets has been prepared and characterized by XRD, FT-IR, SEM and TEM. Electrochemical properties as supercapacitor of the as-prepared sample, such as CV, EIS, GCD and the cycle life test have also been studied. The as-prepared MOF (V, Ni) showed a high specific capacitance of 178.09 F⋅g-1 at 1 A⋅g-1 as well as good cycling stability and coulombic efficiency. This work proved that the novel MOFs based on polyoxovanadate hybrid material may serve as a promising electrode material for high-performance supercapacitor.
  • 加载中
    1. [1]

      Bello, I. T.; Oladipo, A. O.; Adedokun, O.; Dhlamini, S. M. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: a mini-review. Mater. Today Commun. 2020, 25, 1-9.

    2. [2]

      Xu, B.; Zhang, H. B.; Mei, H.; Sun, D. F. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordin. Chem. Rev. 2020, 420, 1-22.

    3. [3]

      Azizi, S.; Seifi, M.; Askari, M. B. NiFe anchored to reduced graphene oxide as a low-cost and high-performance electrode material for supercapacitor applications. Physica. B 2021, 600, 1-7.

    4. [4]

      Andikaey, Z.; Ensafi, A. A.; Rezaei, B. Synthesis of engineered graphene nanocomposites coated with NiCo metal-organic frameworks as electrodes for high-quality supercapacitor. Int. J. Hydrogen Energ. 2020, 45, 32059-32071.  doi: 10.1016/j.ijhydene.2020.09.004

    5. [5]

      Su, F.; Wu, Z. S. A perspective on graphene for supercapacitors: current status and future challenges. J. Energy Chem. 2021, 53, 354-357.  doi: 10.1016/j.jechem.2020.05.041

    6. [6]

      Down, M. P.; Rowley-Neale, S. J.; Smith, G. C.; Banks, C. E. Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energ Mater. 2018, 1, 707-714.  doi: 10.1021/acsaem.7b00164

    7. [7]

      Vargheese, S.; Muthu, D.; Pattappan, D.; Kavya, K. V.; Kumar, R. T. R.; Haldorai, Y. Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: constructing a 9.0 V symmetric supercapacitor cell. Electrochim. Acta 2020, 364, 1-8.

    8. [8]

      Qu, Y. P.; Shi, C. J.; Cao, H. F.; Wang, Y. Z. Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Mater. Lett. 2020, 280, 1-5.

    9. [9]

      Wei, P. P.; Yang, Y.; Li, W. Z.; Li, G. M. Keggin-POM@rht-MOF-1 composite as heterogeneous catalysts towards ultra-deep oxidative fuel desulfurization. Fuel. 2020, 274, 1-8.

    10. [10]

      Han, Y. H.; Qu, B. T.; Li, J.; Zhang, X. M.; Peng, X. Y.; Li, W. H.; Zhang, R. P. A simple POM clusters for in vivo NIR-II photoacoustic imaging-guided NIR-II photothermal therapy. J. Inorg. Biochem. 2020, 209, 1-9.

    11. [11]

      Wei, T.; Zhang, M.; Wu, P.; Tang, Y. Z.; Li, S. L.; Shen, F. C.; Wang, X. L.; Zhou, X. P.; Lan, Y. Q. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano. Energy 2017, 34, 205-214.  doi: 10.1016/j.nanoen.2017.02.028

    12. [12]

      Zhu, Z. Z.; Benages-Vilau, R.; Gomez-Romero, P. Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors? Electrochim. Acta 2020, 362, 1-9.

    13. [13]

      Xie, T. P.; Zhang, L.; Wang, Y.; Wang, Y. J.; Wang, X. X. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram. Int. 2019, 45, 2519-2520.

    14. [14]

      Sun, C. Y.; Wang, E. B.; Xiao, D. R.; An, H. Y.; Xu, L. Synthesis and characterization of a novel two-dimensional layered vanadate complex containing double helical chains. J. Mol. Struct. 2007, 840, 53-58.

    15. [15]

      Gholipour-Ranjbar, H.; Soleimani, M.; Naderi, H. R. Application of Ni/Co-based metal-organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J. Chem. 2016, 40, 9187-9193.

  • 加载中
    1. [1]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    4. [4]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    13. [13]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    14. [14]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    15. [15]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    16. [16]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    17. [17]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    18. [18]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    19. [19]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    20. [20]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

Metrics
  • PDF Downloads(3)
  • Abstract views(344)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return