Citation: Su-Qin ZHAO, Jin-Zhong GU. Syntheses, Structures and Catalytic Properties of Two Mn(Ⅱ) and Cd(Ⅱ) Coordination Polymers through in Situ Ligand Reaction[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 785-796. doi: 10.14102/j.cnki.0254–5861.2011–3052 shu

Syntheses, Structures and Catalytic Properties of Two Mn(Ⅱ) and Cd(Ⅱ) Coordination Polymers through in Situ Ligand Reaction

  • Corresponding author: Su-Qin ZHAO, qhzhsq@sina.com Jin-Zhong GU, gujzh@lzu.edu.cn
  • Received Date: 3 December 2020
    Accepted Date: 8 February 2021

    Fund Project: the Science and Technology Plan of Qinghai Province 2020-ZJ-705

Figures(15)

  • Two coordination polymers, namely [Mn(μ-Hcpia)(bipy)(H2O)2]n (1) and [Cd3(μ3-Hcpia)2(μ-Hbiim)2(μ-H2biim)(H2O)2]n (2), have been constructed hydrothermally using H2cbia (H2cbia = 5-(4΄-cyanobenzoxy)isophthalic acid), bipy (bipy = 4, 4΄-bipyridine), H2biim (H2biim = 2, 2΄-biimidazole), and manganese or cadmium chlorides at 160 ℃. Interestingly, the H3cpia (H3cpia = 5-(4΄-carboxylphenoxy)isophthalic acid) ligand was generated by in situ hydrolysis of cyano group in H2cbia. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses (TGA), and single-crystal X-ray diffraction analyses. Both compounds crystallize in the triclinic system, space group P\begin{document}$ \overline 1 $\end{document}. Compound 1 discloses a 1D linear chain of the 2C1 topological type. Adjacent chains are assembled into a 2D supramolecular sheet through O–H…O/N hydrogen bonds. Compound 2 features a 3D framework with a 3, 4, 4T25 topology. The luminescent and catalytic properties of two compounds were investigated. Compound 1 exhibits a superior catalytic activity in the cyanosilylation at room temperature.
  • 加载中
    1. [1]

      Yu, L.; Dong, X. L.; Gong, Q. H.; Acharya, S. R.; Lin, Y. H.; Wang, H.; Han, Y.; Thonhauser, T.; Li, J. Splitting mono- and dibranched alkane isomers by a robust aluminium-based metal-organic framework material with optimal pore dimensions. J. Am. Chem. Soc. 2020, 142, 6925–6929.  doi: 10.1021/jacs.0c01769

    2. [2]

      Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q.; Sun, D. F.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.  doi: 10.1021/jacs.0c00805

    3. [3]

      Wang, H.; Li, J. Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968–1978.  doi: 10.1021/acs.accounts.8b00658

    4. [4]

      Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.  doi: 10.1021/acs.accounts.8b00521

    5. [5]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Arol, A. S.; Kirillova, M. V.; Kirillov, A. M. Metal-organic architectures assembled from multifunctional polycarboxylates: hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation. Inorg. Chem. 2019, 58, 2403−2412.  doi: 10.1021/acs.inorgchem.8b02926

    6. [6]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A. M. Cobalt(Ⅱ) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875−5885.  doi: 10.1021/acs.inorgchem.9b00242

    7. [7]

      Roy, M.; Adhikary, A.; Mondal, A. K.; Mondal, R. Multifunctional properties a 1D helical Co(Ⅱ) coordination polymers: toward single-ion magnetic behavior and efficient dye degradation. ACS Omega 2018, 3, 15315−15324.  doi: 10.1021/acsomega.8b02212

    8. [8]

      Salitros, I.; Herchel, R.; Fuhr, O.; Gonzalez-Prieto, R.; Ruben, M. Polynuclear iron(Ⅱ) complexes with 2, 6-bis(pyrazol-1-yl)-pyridineanthracence ligands exhibiting highly distorted high-spin centers. Inorg. Chem. 2019, 58, 4310−4319.  doi: 10.1021/acs.inorgchem.8b03432

    9. [9]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    10. [10]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.  doi: 10.1021/cr200101d

    11. [11]

      Haddad, S.; Lázaro, I. A.; Fantham, M.; Mishra, A.; Silvestre-Albero, J.; Osterrieth, J. W. M.; Schierle, G. S. K.; Kaminski, C. F., Forgan, R. S.; Fairen-Jimenez, D. Design of a functionalized metal-organic framework system of enhanced targeted delivery to mitochondria. J. Am. Chem. Soc. 2020, 142, 6661–6674.  doi: 10.1021/jacs.0c00188

    12. [12]

      Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207–221.  doi: 10.1016/j.ccr.2017.12.003

    13. [13]

      Liu, J. J.; Lu, Y. W.; Lu, W. B. Metal-dependent photosensitivity of three isostructural 1D CPs based on the 1, 1΄-bis(3-carboxylatobenzyl)-4, 4΄-bipyridinum moiety. Dalton Trans. 2020, 49, 4044–4049.  doi: 10.1039/D0DT00157K

    14. [14]

      Gu, J. Z.; Cui, Y. H.; Liang, X. X.; Wu, J.; Lv, D. Y.; Kirillov, A. M. Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination and template effect of 4, 4΄-bipyridine. Cryst. Grwoth Des. 2016, 16, 4658−4670.  doi: 10.1021/acs.cgd.6b00735

    15. [15]

      Han, S. D.; Chen, Y. Q.; Zhao, J. P.; Liu, S. J.; Miao, X. H.; Hu, T. L.; Bu, X. H. Solvent-induced structural diversities from discrete cup-shaped Co8 clusters to Co8 cluster-based chains accompanied by a situ ligand conversion. CrystEngComm. 2014, 16, 753–756.  doi: 10.1039/C3CE42007H

    16. [16]

      Zou, X. Z.; Wu, J.; Gu, J. Z.; Zhao, N.; Feng, A. S.; Li, Y. Syntheses of two nickel(Ⅱ) coordination compounds based on a rigid linear tricarboxylic acid. Chin. J. Inorg. Chem. 2019, 35, 1705–1711.

    17. [17]

      Gu, J. Z.; Gao, Z. Q.; Tang, Y. pH and auxiliary ligand influence on the structural variations of 5(2΄-carboxylphenyl) nicotate coordination polymers. Cryst. Growth Des. 2012, 12, 3312−3323.  doi: 10.1021/cg300442b

    18. [18]

      Li, Y.; Wu, J.; Gu, J. Z.; Qiu, W. D.; Feng, A. S. Temperature-dependent syntheses of two manganese(Ⅱ) coordination compounds based on an ether-bridged tetracarboxylic acid. Chin. J. Struct. Chem. 2020, 39, 727–736.

    19. [19]

      Zhang, J.; Liang, J. X.; Wang, Y.; Zhai, L. J.; Niu, X. Y.; Huo, T. P. Synthesis and electrochemical properties of temperature-induced two metal-organic frameworks-based electrodes for supercapacitor. Cryst. Growth Des. 2020, 20, 460–467.  doi: 10.1021/acs.cgd.9b01419

    20. [20]

      Hou, Y. L.; Peng, Y. L.; Diao, Y. X.; Liu, J.; Chen, L. Z.; Li, D. Side chain induced self-assembly and selective catalytic oxidation activity of copper(Ⅰ)-coper(Ⅱ)-N4 complexes. Cryst. Growth Des. 2020, 20, 1237–1241.  doi: 10.1021/acs.cgd.9b01499

    21. [21]

      Phukan, N.; Goswami, S.; Lipstman, S.; Goldberg, I.; Tripuramallu, B. K. Solvent influence in obtaining diverse coordination symmetries of Dy(Ⅲ) metal centers in coordination polymers: synthesis, characterization, and luminescent properties. Cryst. Growth Des. 2020, 20, 2973–2984.  doi: 10.1021/acs.cgd.9b01599

    22. [22]

      Rosa, I. M. L.; Costa, M. C. S.; Vitto, B. S.; Amorim, L.; Correa, C. C.; Pinheiro, C. B.; Doriguetto, A. C. Influence of synthetic methods in the structure and dimensionality of coordination polymers. Cryst. Growth Des. 2016, 16, 1606–1616.  doi: 10.1021/acs.cgd.5b01716

    23. [23]

      Grape, E. S.; Xu, H. Y.; Cheung, O.; Calmels, M.; Zhao, J. J.; Dejoie, C.; Proserpio, D. M.; Zou, X. D.; Inge, A. K. Breathing metal-organic framework based on flixible inorganic building units. Cryst. Growth Des. 2020, 20, 320–329.  doi: 10.1021/acs.cgd.9b01266

    24. [24]

      Ge, Y. F.; Teng, B. S.; Lv, L. L.; Chen, R.; Wu, B. L. Homochairal metal-organic frameworks of lead(Ⅱ) and cadmium(Ⅱ) constructed by amino acid-functionalized isophthalic acids: synthesis, structure diversity, and optical properties. Cryst. Growth Des. 2020, 20, 486–497.  doi: 10.1021/acs.cgd.9b01442

    25. [25]

      Gu, J. Z.; Cai, Y.; Wen, M.; Shi, Z. F.; Kirillov, A. M. A new series of Cd(Ⅱ) metal-organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties. Dalton Trans. 2018, 47, 14327−14339.  doi: 10.1039/C8DT02467G

    26. [26]

      Wang, Q.; Fan, Y.; Song, T. Y.; Xu, J. N.; Wang, J.; Chai, J.; Liu, Y. L.; Wang, L. Zhang, L. R. In situ synthesis of a series of lanthanide coordination polymers based on N-heterocyclic carboxylate ligands: crystal structure and luminescence. Inorg. Chim. Acta 2015, 438, 128−134.  doi: 10.1016/j.ica.2015.08.033

    27. [27]

      Li, Y. Y.; Lu, Y. Q.; Qiao, X. Y.; Huang, W. M.; Niu, Y. Y. In situ formation of 4-cyanopyridinecarboxylic acid and its polyacid doping coordination polymer for adsorption of organic dyes in wastewater. Inorg. Chem. Commun. 2020, 118, 108002.  doi: 10.1016/j.inoche.2020.108002

    28. [28]

      Wilson, J. A.; Uebler, J. W.; LaDuca, R. L. Cadmium adipate coordination polymers prepared with isomeric pyridylamide precursors: pH-dependent in situ reaction chemistry and divergent dimensionalities. CrystEngComm. 2013, 15, 5218–5225.  doi: 10.1039/c2ce26583d

    29. [29]

      Zhong, D. C.; Guo, H. B.; Deng, J. H.; Chen, Q.; Luo, X. Z. Two coordination polymers of benzene-1, 2, 4, 5-tetracarboxylic acid (H4BTC): in situ ligand syntheses, structures, and luminescent properties. CrystEngComm. 2015, 17, 3519–3525.  doi: 10.1039/C5CE00461F

    30. [30]

      Hu, T. P.; Bi, W. H.; Hu, X. Q.; Zhao, X. L.; Sun, D. F. Construction of metal-organic frameworks with novel {Zn8O13} SBU or chiral channels through in situ ligand reaction. Cryst. Growth Des. 2010, 10, 3324–3326.  doi: 10.1021/cg100725j

    31. [31]

      Evans, O. R.; Xiong, R. G.; Wang, Z. Y.; Wong, G. K.; Lin, W. B. Crystal engineering of acentric diamondoid metal-organic coordination networks. Angew. Chem. Int. Ed. 1999, 38, 536–538.  doi: 10.1002/(SICI)1521-3773(19990215)38:4<536::AID-ANIE536>3.0.CO;2-3

    32. [32]

      Mishra, R.; Ahmad, M.; Tripathi, M. R.; Butcher, R. J. Four novel coordination polymers of transition metals built using a semi rigid oxygen donor ligand: crystal structures, novel topology and emission studies. Polyhedron 2013, 50, 169–178.  doi: 10.1016/j.poly.2012.10.045

    33. [33]

      Lama, P.; Aijaz, A.; Sañudo, E. C.; Bharadwaj, P. K. Synthesis, structure, and magnetic properties of cobalt(Ⅱ) coordination polymers from a new tripodal carboxylate ligand: weak ferromagnetism and metamagnetism. Cryst. Growth Des. 2010, 10, 283–290.  doi: 10.1021/cg900896w

    34. [34]

      Zhang, X.; Ma, G. C.; Kong, F. Z.; Yu, Z. Y.; Wang, R. H. A two-fold interpenetrating metal-organic framework based on tetranuclear zinc-carboxylate clusters. Inorg. Chem. Commun. 2012, 22, 44–47.  doi: 10.1016/j.inoche.2012.05.020

    35. [35]

      Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.

    36. [36]

      Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    37. [37]

      Shi, Z. Z.; Pan, Z. R.; Jia, H. L.; Chen, S. G.; Qin, L.; Zheng, H. G. Zn(Ⅱ)/Cd(Ⅱ) terephthalate coordination polymers incorporating bi-, tri-, and tetratopic phenylamine derivatives: crystal structures and photoluminescent properties. Cryst. Growth Des. 2016, 16, 2747–2755.  doi: 10.1021/acs.cgd.6b00056

    38. [38]

      Yang, R.; Liu, Y. G.; Van Hecke, K.; Cui, G. H. Synthesis and characterization of two cobalt(Ⅱ) coordination polymers based on 5-tert-butyl isophthalic acid and bis(benzimidazole) ligands. Transit. Metal Chem. 2015, 40, 333–340.  doi: 10.1007/s11243-015-9921-6

    39. [39]

      Qin, L.; Zheng, X. H.; Xiao, S. L.; Cui, G. H. Two cobalt(Ⅱ) complexes based on a flexible bis(5, 6-dimethylbenzimidazole) and rigid organic dicarboxylate ligands. Transit. Metal Chem. 2013, 38, 891–897.  doi: 10.1007/s11243-013-9764-y

    40. [40]

      Loukopoulos, E.; Kostakis, G. E. Recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410.  doi: 10.1080/00958972.2018.1439163

    41. [41]

      Pal, S.; Maiti, S.; Nayek, H. P. A three-dimensional (3D) manganese (Ⅱ) coordination polymer: synthesis, structure and catalytic activities. Appl Organometal Chem. 2018, 32, 4447.  doi: 10.1002/aoc.4447

    42. [42]

      Gupta, V.; Mandal, S. K. Coordination driven self-assembly of [2+2+2] molecular squares: synthesis, crystal structures, catalytic and luminescence properties. Dalton Trans. 2018, 47, 9742–9754.  doi: 10.1039/C8DT01367E

    43. [43]

      Karmakar, A.; Paul, A.; Rúbio, G. M. D. M.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Zinc(Ⅱ) and copper(Ⅱ) metal-organic frameworks constructed from a terphenyl-4, 4΄΄-dicarboxylic acid derivative: synthesis, structure, and catalytic application in the cyanosilylation of aldehydes. Eur. J. Inorg. Chem. 2016, 5557–5567.

  • 加载中
    1. [1]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    6. [6]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    14. [14]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    15. [15]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    16. [16]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(1)
  • Abstract views(493)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return