Citation: Xiao-Yu ZHONG, En-Qiang WU, Sheng-Dong YANG, Hao-Hang WANG, Xiao-Xin LIN, Yao-Guo SHEN. Optical Properties and Thermal Stability of a Cubic Sulfate Rb2Ca2(SO4)3[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 949-954. doi: 10.14102/j.cnki.0254–5861.2011–3047 shu

Optical Properties and Thermal Stability of a Cubic Sulfate Rb2Ca2(SO4)3

  • Corresponding author: Yao-Guo SHEN, shenyg@mju.edu.cn
  • Zhong Xiao-Yu and Wu En-Qiang contributed equally to this work
  • Received Date: 23 November 2020
    Accepted Date: 4 January 2021

    Fund Project: the Doctoral Fund MJY19014Natural Science Foundation of Fujian Province 2019J01762President's Fund 103952020020

Figures(6)

  • In this paper, a non-centrosymmetric compound of Rb2Ca2(SO4)3 has been synthesized by a high temperature solid-state reaction and high temperature melting method. Single-crystal X-ray diffraction analysis shows that Rb2Ca2(SO4)3 crystallizes in the cubic space group of P213, and its cell parameters are a = b = c = 10.5569(6) Å, Z = 4 and V = 1176.55(12) Å3, respectively. In the crystal structure, SO4 tetrahedra and CaO6 octahedra are connected with each other by a corner-sharing mode to construct the three-dimensional framework of Rb2Ca2(SO4)3. Optical measurements show that the title compound has a short ultraviolet absorption edge and a moderate second-harmonic generation response. The optical origin is illustrated by the electron band structure calculation. In addition, thermal stability is also studied by virtue of differential thermal/thermogravimetric analysis and powder XRD technique.
  • 加载中
    1. [1]

      Li, Y. Q.; Luo, J. H.; Ji, X. H.; Zhao, S. G. A short-wave UV nonlinear optical sulfate of high thermal stability. Chin. J. Struct. Chem. 2020, 39, 485−492.

    2. [2]

      Huang, L.; Zou, G. H. Recent progresses of UV nonlinear optical materials. Chin. J. Struct. Chem. 2020, 39, 1571−1577.

    3. [3]

      Shen, Y. G.; Xue, X. L.; Tu, W. Y.; Liu, Z. Q.; Yan, R. W.; Zhang, H.; Jia, J. R. Synthesis, crystal structure, and characterization of a noncentrosymmetric sulfate Cs2Ca2(SO4)3. Eur. J. Inorg. Chem. 2020, 2020, 854−858.  doi: 10.1002/ejic.202000025

    4. [4]

      Chen, J.; Ali, K. M.; Xiao, C. X.; Yan, Y. X.; Dai, Y.; Chen, L. Recent advances in nonlinear optical phosphate materials. Chin. J. Struct. Chem. 2017, 36, 1837−1858.

    5. [5]

      Zhang, X.; Wang, Z. M.; Wang, G. L.; Zhu, Y.; Xu, Z. Y.; Chen, C. T. Widely tunable and high-average-power fourth-harmonic generation of a Ti: sapphire laser with a KBe2BO3F2 prism-coupled device. Opt. Lett. 2009, 34, 1342−1344.  doi: 10.1364/OL.34.001342

    6. [6]

      Chen, Y. N.; An, D. H.; Zhang, M.; Hu, C.; Mutailipu, M.; Yang, Z. H.; Lu, X. Q.; Pan, S. L. Li6Zn3(BO3)4: a new zincoborate featuring vertex-, edge- and face-sharing LiO4 tetrahedra and exhibiting reversible phase transitions. Inorg. Chem. Front. 2017, 4, 1100−1107.  doi: 10.1039/C7QI00183E

    7. [7]

      Zhao, S. G.; Gong, P. F.; Bai, L.; Xu, X.; Zhang, S. Q.; Sun, Z. H.; Lin, Z. S.; Hong, M. C.; Chen, C. T.; Luo, J. H. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 2014, 5, 4019.  doi: 10.1038/ncomms5019

    8. [8]

      Li, Y.; Liang, F.; Zhao, S.; Li, L.; Wu, Z.; Ding, Q.; Liu, S.; Lin, Z.; Hong, M.; Luo, J. Two non-pi-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833−3837.  doi: 10.1021/jacs.9b00138

    9. [9]

      Li, L.; Wang, Y.; Lei, B. H.; Han, S. J.; Yang, Z. H.; Poeppelmeier, K. R.; Pan, S. L. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J. Am. Chem. Soc. 2016, 138, 9101−9104.  doi: 10.1021/jacs.6b06053

    10. [10]

      Li, L.; Wang, Y.; Lei, B. H.; Han, S. J.; Yang, Z. H.; Li, H. Y.; Pan, S. L. LiRb2PO4: a new deep-ultraviolet nonlinear optical phosphate with a large SHG response. J. Mater. Chem. C 2017, 5, 269−274.  doi: 10.1039/C6TC04565K

    11. [11]

      Shi, Y.; Pan, S.; Dong, X.; Wang, Y.; Zhang, M.; Zhang, F.; Zhou, Z. Na3Cd3B(PO4)4: a new noncentrosymmetric borophosphate with zero-dimensional anion units. Inorg. Chem. 2012, 51, 10870−10875.  doi: 10.1021/ic301351k

    12. [12]

      Boujelben, M.; Toumi, M.; Mhiri, T. Langbeinite-type Rb2Ca2(SO4)3. Acta Crystallogr., Sect. E: Cryst. Commun. 2007, 63, I157−U162.  doi: 10.1107/S1600536807027043

    13. [13]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sec. A: Found. Crystallogr. 2008, 64, 112−122.  doi: 10.1107/S0108767307043930

    14. [14]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    15. [15]

      Kurtz, S. K. Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798−3813.  doi: 10.1063/1.1656857

    16. [16]

      Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045−1097.  doi: 10.1103/RevModPhys.64.1045

    17. [17]

      Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567−570.  doi: 10.1524/zkri.220.5.567.65075

    18. [18]

      Ceperley, D. M.; Alder, B. J. Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566−569.  doi: 10.1103/PhysRevLett.45.566

    19. [19]

      Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 23, 5048−5079.  doi: 10.1103/PhysRevB.23.5048

    20. [20]

      Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41, 1227−1230.  doi: 10.1103/PhysRevB.41.1227

    21. [21]

      Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallogr., Sec. B: Struct. Sci. 1985, 41, 244−247.

    22. [22]

      Brese, N. E.; O' Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr., Sect. B: Struct. Sci. 1991, 47, 192−197.  doi: 10.1107/S0108768190011041

    23. [23]

      Lee, M. H.; Yang, C. H.; Jan, J. H. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Phys. Rev. B 2004, 70, 235110  doi: 10.1103/PhysRevB.70.235110

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    13. [13]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    20. [20]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

Metrics
  • PDF Downloads(1)
  • Abstract views(178)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return