Citation: De-Xiang ZHANG, Yao LI, Lan-Xin PENG, Hai-Pu LI, Ying YANG. Synthesis and Characterization of Organoboryl Germanium(Ⅱ) Oxides Containing Ge–O–B and Ge–O–B–O–Ge Cores[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 811-820. doi: 10.14102/j.cnki.0254–5861.2011–3042 shu

Synthesis and Characterization of Organoboryl Germanium(Ⅱ) Oxides Containing Ge–O–B and Ge–O–B–O–Ge Cores

  • Corresponding author: Ying YANG, yangy@csu.edu.cn
  • Received Date: 17 November 2020
    Accepted Date: 13 January 2021

    Fund Project: the National Natural Science Foundation of China 21771194

Figures(8)

  • Organoboryl germanium(Ⅱ) oxides were synthesized from the 1, 4-addition reaction of L′Ge (L′ = HC[C(CH2)N(Ar)]C(Me)N(Ar), Ar = 2, 6-iPr2C6H3) with selected monosubstituted arylboronic acids RB(OH)2 (R = 2, 6-Me2C6H3, 2, 4, 6-Me3C6H2, 1-Naph) at the molar ratios of 1:1 and 2:1. The mononuclear products RB(OH)OGeL (L = CH[C(Me)N(Ar)]2, Ar = 2, 6-iPr2C6H3; R = 2, 6-Me2C6H3 (1), 2, 4, 6-Me3C6H2 (2), 1-Naph (3)) containing the Ge–O–B core were obtained smoothly through the 1:1 reaction. However, the reaction of L′Ge with 2, 6-Me2C6H3B(OH)2 in a 2:1 ratio gave only the mononuclear product (1) instead of the expected binuclear one. What's more, a new borate compound [(2, 6-Me2C6H3)4B5O6]-[H: C]+ (4) (: C = C[N(iPr)C(Me)]2) was concomitantly formed when the in situ prepared L′Ge was used as the precursor. In contrast, the use of 2, 4, 6-Me3C6H2B(OH)2 or 1-NaphB(OH)2 as the organoboryl source in the similar reaction led to the formation and isolation of the binuclear products RB(OGeL)2 (R = 2, 4, 6-Me3C6H2 (5), 1-Naph (6)) containing the Ge–O–B–O–Ge core in a straight way. Compounds 1~6 were determined by single-crystal X-ray diffraction analysis.
  • 加载中
    1. [1]

      Du, J.; He, M.; Wang, X.; Fan, H.; Wei, Y. Facile preparation of boronic acid-functionalized magnetic nanoparticles with a high capacity and their use in the enrichment of cis-diol-containing compounds from plasma. Biomed. Chromatogr. 2015, 29, 312–320.  doi: 10.1002/bmc.3277

    2. [2]

      Li, M.; Xu, S. Y.; Gross, A. J.; Hammond, J. L.; Estrela, P.; Weber, J.; Lacina, K.; James, T. D.; Marken, F. Ferrocene-boronic acid-fructose binding based on dual-plate generator-collector voltammetry and square-wave voltammetry. ChemElectroChem. 2015, 2, 867–871.  doi: 10.1002/celc.201500016

    3. [3]

      Bartelmess, J.; De Luca, E.; Signorelli, A.; Baldrighi, M.; Becce, M.; Brescia, R.; Nardone, V.; Parisini, E.; Echegoyen, L.; Pompa, P. P.; Giordani, S. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale 2014, 6, 13761–13769.  doi: 10.1039/C4NR04533E

    4. [4]

      Sneddon, G.; Greenaway, A.; Yiu, H. H. P. The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 2014, 4, 1301873.  doi: 10.1002/aenm.201301873

    5. [5]

      Franks, A. T.; Franz, K. J. A prochelator with a modular masking group featuring hydrogen peroxide activation with concurrent fluorescent reporting. Chem. Commun. 2014, 50, 11317–11320.  doi: 10.1039/C4CC05076B

    6. [6]

      Bull, S. D.; Davidson, M. G.; van den Elsen, J. M. H.; Fossey, J. S.; Jenkins, A. T. A.; Jiang, Y. B.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T. D. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res. 2013, 46, 312–326.  doi: 10.1021/ar300130w

    7. [7]

      Rodríguez-Cuamatzi, P.; Vargas-Díaz, G.; Höpfl, H. Modification of 2D water that contains hexameric units in chair and boat conformations—a contribution to the structural elucidation of bulk water. Angew. Chem. Int. Ed. 2004, 43, 3041–3044.  doi: 10.1002/anie.200453957

    8. [8]

      Rodríguez-Cuamatzi, P.; Arillo-Flores, O. I.; Bernal-Uruchurtu, M. I.; Höpfl, H. Theoretical and experimental evaluation of homo- and heterodimeric hydrogen-bonded motifs containing boronic acids, carboxylic acids, and carboxylate anions:   application for the generation of highly stable hydrogen-bonded supramolecular systems. Cryst. Growth Des. 2005, 5, 167–175.  doi: 10.1021/cg0498453

    9. [9]

      Rodríguez-Cuamatzi, P.; Luna-García, R.; Torres-Huerta, A.; Bernal-Uruchurtu, M. I.; Barba, V.; Höpfl, H. On the organizing role of water molecules in the assembly of boronic acids and 4, 4΄-bipyridine: 1D, 2D and 3D hydrogen-bonded architectures containing cyclophane-type motifs. Cryst. Growth Des. 2009, 9, 1575–1583.  doi: 10.1021/cg8012238

    10. [10]

      Pantcheva, I.; Nishihara, Y.; Osakada, K. Arylplatinum complexes with arylboronate ligands. Their preparation, structure, and relevance to transmetalation. Organometallics 2005, 24, 3815–3817.  doi: 10.1021/om049050t

    11. [11]

      Zhao, P.; Incarvito, C. D.; Hartwig, J. F. Directly observed transmetalation from boron to rhodium. β-Aryl elimination from Rh(Ⅰ) arylboronates and diarylborinates. J. Am. Chem. Soc. 2007, 129, 1876–1877.  doi: 10.1021/ja068587q

    12. [12]

      Balkwill, J. E.; Cole, S. C.; Coles, M. P.; Hitchcock, P. B. Bimetallic zirconium heterocycles supported by boron-oxygen ligands. Inorg. Chem. 2002, 41, 3548–3552.  doi: 10.1021/ic0200848

    13. [13]

      Yang, Y.; Zhao, N.; Zhu, H.; Roesky, H. Syntheses and reactions of derivatives of (pyrrolylaldiminato)germanium(Ⅱ) and -aluminum(Ⅲ). Organometallics 2012, 31, 1958–1964.  doi: 10.1021/om201252k

    14. [14]

      Yang, Y.; Zhao, N.; Wu, Y.; Zhu, H.; Roesky, H. Synthesis and characterization of beta-diketiminate germanium(Ⅱ) compounds. Inorg. Chem. 2012, 51, 2425–2431.  doi: 10.1021/ic202388d

    15. [15]

      Yang, Y.; Roesky, H. W.; Jones, P. G.; So, C. W.; Zhang, Z. S.; Herbst-Irmer, R.; Ye, H. Q. Synthesis and structural characterization of monomeric heterobimetallic oxides with a Ge(Ⅱ)–O–M skeleton (M = Yb, Y). Inorg. Chem. 2007, 46, 10860–10863.  doi: 10.1021/ic701262x

    16. [16]

      Yadav, D.; Kumar Siwatch, R.; Sinhababu, S.; Karwasara, S.; Singh, D.; Rajaraman, G.; Nagendran, S. Digermylene oxide stabilized group 11 metal iodide complexes. Inorg. Chem. 2015, 54, 11067–11076.  doi: 10.1021/acs.inorgchem.5b01436

    17. [17]

      Zabula, A. V.; Hahn, F. E.; Pape, T.; Hepp, A. Preparation and coordination chemistry of bidentate benzimidazoline-2-germylenes. Organometallics 2007, 26, 1972–1980.  doi: 10.1021/om070054i

    18. [18]

      Dickschat, J. V.; Heitmann, D.; Pape, T.; Hahn, F. E. Synthesis of stable diphenyl-di(germylene) and diphenyl-di(plumbylene). J. Organomet. Chem. 2013, 744, 160–164.  doi: 10.1016/j.jorganchem.2013.06.016

    19. [19]

      Driess, M.; Yao, S.; Brym, M.; van Wullen, C. A heterofulvene-like germylene with a betain reactivity. Angew. Chem. Int. Ed. 2006, 45, 4349–4352.  doi: 10.1002/anie.200600237

    20. [20]

      Jana, A.; Nekoueishahraki, B.; Roesky, H. W.; Schulzke, C. Stable compounds of composition LGe(Ⅱ)R (R = OH, PhO, C6F5O, PhCO2) prepared by nucleophilic addition reactions. Organometallics 2009, 28, 3763–3766.  doi: 10.1021/om900149k

    21. [21]

      Wang, W.; Yao, S.; van Wüllen, C.; Driess, M. A cyclopentadienide analogue containing divalent germanium and a heavy cyclobutadiene-like dianion with an unusual Ge4 core. J. Am. Chem. Soc. 2008, 130, 9640–9641.  doi: 10.1021/ja802502b

    22. [22]

      Jana, A.; Objartel, I.; Roesky, H. W.; Stalke, D. Cleavage of a N–H bond of ammonia at room temperature by a germylene. Inorg. Chem. 2009, 48, 798–800.  doi: 10.1021/ic801964u

    23. [23]

      Yao, S.; Zhang, X.; Xiong, Y.; Schwarz, H.; Driess, M. Isomerization of an N-heterocyclic germylene to an azagermabenzen-1-ylidene and its coupling to a unique bis(germylene). Organometallics 2010, 29, 5353–5357.  doi: 10.1021/om100383y

    24. [24]

      Harris, L. M.; Tam, E. C. Y.; Cummins, S. J. W.; Coles, M. P.; Fulton, J. R. The reactivity of germanium phosphanides with chalcogens. Inorg. Chem. 2017, 56, 3087–3094.  doi: 10.1021/acs.inorgchem.6b03109

    25. [25]

      Wu, Y.; Liu, L.; Su, J.; Yan, K.; Wang, T.; Zhu, J.; Gao, X.; Gao, Y.; Zhao, Y. Reactivity of germylene toward phosphorus-containing compounds: nucleophilic addition and tautomerism. Inorg. Chem. 2015, 54, 4423–4430.  doi: 10.1021/acs.inorgchem.5b00205

    26. [26]

      Wu, Y.; Shan, C.; Sun, Y.; Chen, P.; Ying, J.; Zhu, J.; Liu, L.; Zhao, Y. Main group metal-ligand cooperation of N-heterocyclic germylene: an efficient catalyst for hydroboration of carbonyl compounds. Chem. Commun. 2016, 52, 13799–13802.  doi: 10.1039/C6CC08147A

    27. [27]

      Loh, Y. K.; Ying, L.; Ángeles Fuentes, M.; Do, D. C. H.; Aldridge, S. An N-heterocyclic boryloxy ligand isoelectronic with N-heterocyclic imines: access to an acyclic dioxysilylene and its heavier congeners. Angew. Chem. Int. Ed. 2019, 58, 4847–4851.  doi: 10.1002/anie.201812058

    28. [28]

      Hadlington, T. J.; Kefalidis, C. E.; Maron, L.; Jones, C. Efficient reduction of carbon dioxide to methanol equivalents catalyzed by two-coordinate amido-germanium(Ⅱ) and -tin(Ⅱ) hydride complexes. ACS Catal. 2017, 7, 1853–1859.  doi: 10.1021/acscatal.6b03306

    29. [29]

      Wu, Y.; Liu, L.; Su, J.; Yan, K.; Zhu, J.; Zhao, Y. Synthesis of digermylene-stabilized linear tetraboronate and boroxine. Chem. Commun. 2016, 52, 1582–1585.  doi: 10.1039/C5CC09330A

    30. [30]

      Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3-8.  doi: 10.1107/S2053229614024218

    31. [31]

      Ferro, L.; Hitchcock, P. B.; Coles, M. P.; Fulton, J. R. Reactivity of divalent germanium alkoxide complexes is in sharp contrast to the heavier tin and lead analogues. Inorg. Chem. 2012, 51, 1544–1551.  doi: 10.1021/ic201841m

    32. [32]

      Li, B.; Li, Y.; Zhao, N.; Chen, Y.; Chen, Y.; Fu, G.; Zhu, H.; Ding, Y. Synthesis, structure and a nucleophilic coordination reaction of germanetellurones. Dalton Trans. 2014, 43, 12100–12108.  doi: 10.1039/C4DT00937A

    33. [33]

      Xiao, Q.; Tian, L.; Tan, R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Transition-metal-free electrophilic amination of arylboroxines. Org. Lett. 2012, 14, 4230–4233.  doi: 10.1021/ol301912a

    34. [34]

      Dostál, L.; Jambor, R.; Růžička, A.; Jirásko, R.; Lyčka, A.; Beckmann, J.; Ketkov, S. From stiba- and bismaheteroboroxines to N, C, N-chelated diorganoantimony(Ⅲ) and bismuth(Ⅲ) cations—an unexpected case of aryl group migration. Inorg. Chem. 2015, 54, 6010–6019.  doi: 10.1021/acs.inorgchem.5b00893

    35. [35]

      Nishihara, Y.; Nara, K.; Osakada, K. Tetraarylpentaborates, [B5O6Ar4]- (Ar = C6H4OMe-4, C6H3Me2-2, 6):   their formation from the reaction of arylboronic acids with an aryloxorhodium complex, structure, and chemical properties. Inorg. Chem. 2002, 41, 4090–4092.  doi: 10.1021/ic015630w

    36. [36]

      Anulewicz-Ostrowska, R.; Luliński, S.; Pindelska, E.; Serwatowski, J. Reactions of hydroxymesitylboranes with metal alkyls:  an approach to new sterically hindered (metaloxy)mesitylboranes. Inorg. Chem. 2002, 41, 2525–2528.  doi: 10.1021/ic0112490

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(3)
  • Abstract views(265)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return