Citation: Lei ZHANG, Zhuo CHEN. Research Progress of Structure Based Antitumor Drug Design[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2085-2090. doi: 10.14102/j.cnki.0254–5861.2011–3036 shu

Research Progress of Structure Based Antitumor Drug Design

  • Corresponding author: Zhuo CHEN, zchen@fjirsm.ac.cn
  • Received Date: 11 November 2020
    Accepted Date: 20 November 2020

    Fund Project: the National Natural Science Foundation of China 21877113the National Natural Science Foundation of China 81572944the National Natural Science Foundation of China 31300650Natural Science Foundation of Fujian Province 2020I0036Natural Science Foundation of Fujian Province 2019Y9062Natural Science Foundation of Fujian Province 2013N0039the CAS/SAFEA International Partnership Program for Creative Research Teams 30973567the High-Level Entrepreneurship and Innovation Talents Projects in Fujian Province 2018-8-1

Figures(2)

  • At present, the development of antineoplastic drugs has been highly concerned. Many strategies have been developed to explore the safety and effectiveness of antitumor drugs. In recent years, the progress of structural analysis of tumor-associated proteins provides a solid foundation for the design of new targeted drugs through efficient prediction and screening technology. In this review, we briefly summarize the research and development of new antitumor drugs based on structure to enhance tumor targeting property and reduce side effects.
  • 加载中
    1. [1]

      Prakash, G.; Hodnett, E. M. Discriminant analysis and structure-activity relationships. 1. Naphthoquinones. J. Med. Chem. 1978, 21, 369–374.  doi: 10.1021/jm00202a011

    2. [2]

      Bartkowiak, J.; Kapuscinski, J.; Melamed, M. R.; Darzynkiewicz, Z. Selective displacement of nuclear proteins by antitumor drugs having affinity for nucleic acids. Proc. Natl. Acad. Sci. U. S. A 1989, 86, 5151–5154.  doi: 10.1073/pnas.86.13.5151

    3. [3]

      Zhang, S. R.; Wang, X. Y.; Guo, Z. J. Rational design of anticancer platinum(Ⅳ) prodrugs. Adv. Inorg. Chem. 2020, 75, 149–182.

    4. [4]

      Yang, W. Q.; Chen, X.; Li, Y. L.; Guo, S. F.; Wang, Z.; Yu, X. L. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020, 15, 1–3.

    5. [5]

      Wu, Y.; Huang, R.; Jin, J. M.; Zhang, L. J.; Zhang, H.; Chen, H. Z.; Chen, L. L.; Luan, X. Advances in the study of structural modification and biological activities of anoplin. Front. Chem. 2020, 8, 00519.  doi: 10.3389/fchem.2020.00519

    6. [6]

      Koike, K.; Nagano, M.; Ebihara, M.; Hirayama, T.; Tsuji, M.; Suga, H.; Nagasawa, H. Design, synthesis, and conformation-activity study of unnatural bridged bicyclic depsipeptides as highly potent hypoxia inducible factor-1 inhibitors and antitumor agents. J. Med. Chem. 2020, 63, 4022–4046.  doi: 10.1021/acs.jmedchem.9b02039

    7. [7]

      Sengupta, P.; Chattopadhyay, S.; Chatterjee, S. G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov. Today 2017, 22, 1165–1186.  doi: 10.1016/j.drudis.2017.05.001

    8. [8]

      Dallavalle, S.; Dobricic, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Update 2020, 50, 100682.  doi: 10.1016/j.drup.2020.100682

    9. [9]

      Cascioferro, S.; Parrino, B.; Spano, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1, 3, 5-Triazines: a promising scaffold for anticancer drugs development. Eur. J. Med. Chem. 2017, 142, 523–549.  doi: 10.1016/j.ejmech.2017.09.035

    10. [10]

      Zhang, J. M.; Yang, P. L.; Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer. 2009, 9, 28–39.  doi: 10.1038/nrc2559

    11. [11]

      Feucht, J.; Sun, J.; Eyquem, J.; Ho, Y. J.; Zhao, Z. G.; Leibold, J.; Dobrin, A.; Cabriolu, A.; Hamieh, M.; Sadelain, M. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 2019, 25, 82–88.  doi: 10.1038/s41591-018-0290-5

    12. [12]

      Landini, I.; Massai, L.; Cirri, D.; Gamberi, T.; Paoli, P.; Messori, L.; Mini, E.; Nobili, S. Structure-activity relationships in a series of auranofin analogues showing remarkable antiproliferative properties. J. Inorg. Biochem. 2020, 208, 111079.  doi: 10.1016/j.jinorgbio.2020.111079

    13. [13]

      Yamanaka, S.; Sato, Y.; Oikawa, D.; Goto, E.; Fukai, S.; Tokunaga, F.; Takahashi, H.; Sawasaki, T. Subquinocin, a small molecule inhibitor of CYLD and USP-family deubiquitinating enzymes, promotes NF-kappaB signaling. Biochem. Biophys. Res. Commun. 2020, 524, 1–7.  doi: 10.1016/j.bbrc.2019.12.049

    14. [14]

      Wang, X.; Tan, Y.; Huang, Z.; Huang, N.; Gao, M.; Zhou, F.; Hu, J.; Feng, W. Disrupting myddosome assembly in diffuse large Bcell lymphoma cells using the MYD88 dimerization inhibitor ST2825. Oncol. Rep. 2019, 42, 1755–1766.

    15. [15]

      Zhang, L.; Li, Y.; Wang, Q.; Chen, Z.; Li, X.; Wu, Z.; Hu, C.; Liao, D.; Zhang, W.; Chen, Z. S. The PI3K subunits, P110alpha and P110beta are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol. Cancer. 2020, 19, 10.  doi: 10.1186/s12943-019-1112-1

    16. [16]

      Lu, S.; Qiu, Y.; Ni, D.; He, X.; Pu, J.; Zhang, J. Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug. Discov. Today 2020, 25, 177–184.  doi: 10.1016/j.drudis.2019.10.006

    17. [17]

      Huang, Z.; Zhao, J.; Deng, W.; Chen, Y.; Shang, J.; Song, K.; Zhang, L.; Wang, C.; Lu, S.; Yang, X.; He, B.; Min, J.; Hu, H.; Tan, M.; Xu, J.; Zhang, Q.; Zhong, J.; Sun, X.; Mao, Z.; Lin, H.; Xiao, M.; Chin, Y. E.; Jiang, H.; Xu, Y.; Chen, G.; Zhang, J. Identification of a cellularly active SIRT6 allosteric activator. Nat. Chem. Biol. 2018, 14, 1118–1126.  doi: 10.1038/s41589-018-0150-0

    18. [18]

      Lin, Y.; Chen, Z.; Hu, C.; Chen, Z. S.; Zhang, L. Recent progress in antitumor functions of the intracellular antibodies. Drug. Discov. Today 2020, 25, 1109–1120.  doi: 10.1016/j.drudis.2020.02.009

    19. [19]

      Liu, J.; Chen, Z.; Huang, M.; Tang, S.; Wang, Q.; Hu, P.; Gupta, P.; Ashby, C. R.; Chen, Z. S.; Zhang, L. Plasminogen activator inhibitor (PAI) trap3, an exocellular peptide inhibitor of PAI-1, attenuates the rearrangement of F-actin and migration of cancer cells. Exp. Cell. Res. 2020, 391, 111987.  doi: 10.1016/j.yexcr.2020.111987

    20. [20]

      Polizzi, N. F.; DeGrado, W. F. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 2020, 369, 1227–1233.  doi: 10.1126/science.abb8330

    21. [21]

      Fuglestad, B.; Marques, B. S.; Jorge, C.; Kerstetter, N. E.; Valentine, K. G.; Wand, A. J. Reverse micelle encapsulation of proteins for nmr spectroscopy. Methods Enzymol. 2019, 615, 43–75.

    22. [22]

      Tabata, S.; Jevtic, M.; Kurashige, N.; Fuchida, H.; Kido, M.; Tani, K.; Zenmyo, N.; Uchinomiya, S.; Harada, H.; Itakura, M.; Hamachi, I.; Shigemoto, R.; Ojida, A. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience 2019, 22, 256–268.  doi: 10.1016/j.isci.2019.11.025

    23. [23]

      Glasgow, A. A.; Huang, Y. M.; Mandell, D. J.; Thompson, M.; Ritterson, R.; Loshbaugh, A. L.; Pellegrino, J.; Krivacic, C.; Pache, R. A.; Barlow, K. A.; Ollikainen, N.; Jeon, D.; Kelly, M. J. S.; Fraser, J. S.; Kortemme, T. Computational design of a modular protein sense-response system. Science 2019, 366, 1024–1028.  doi: 10.1126/science.aax8780

    24. [24]

      Liu, C.; Zhou, H.; Sheng, X. B.; Liu, X. H.; Chen, F. H. Design, synthesis and SARs of novel telomerase inhibitors based on BIBR1532. Bioorg. Chem. 2020, 102, 104077.  doi: 10.1016/j.bioorg.2020.104077

    25. [25]

      Jeffrey, J. L.; Lawson, K. V.; Powers, J. P. Targeting metabolism of extracellular nucleotides via inhibition of ectonucleotidases CD73 and CD39. J. Med. Chem. 2020. doi: 10.1021/acs.jmedchem.0c01044 (In press).  doi: 10.1021/acs.jmedchem.0c01044

    26. [26]

      Kang, C. H.; Choi, S. U.; Son, Y. H.; Lee, H. K.; Jeong, H. G.; Yun, C. S.; Ahn, S.; Park, C. H. Discovery of a novel chemical scaffold against mutant isocitrate dehydrogenase 1 (IDH1). Anticancer Res. 2020, 40, 4929–4935.

    27. [27]

      Grillo, I. B.; Urquiza-Carvalho, G. A.; Rocha, G. B. PRIMoRDiA: a software to explore reactivity and electronic structure in large biomolecules. J. Chem. Inf. Model. 2020. doi: 10.1021/acs.jcim.0c00655 (In press).  doi: 10.1021/acs.jcim.0c00655

    28. [28]

      Wang, S.; Hu, X.; Feng, Z.; Liu, L.; Sun, K.; Xu, S. Recognition of ion ligand binding sites based on amino acid features with the fusion of energy, physicochemical and structural features. Curr. Pharm. Des. 2020. doi: 10.2174/1381612826666201029100636 (In press).  doi: 10.2174/1381612826666201029100636

    29. [29]

      Waldmann, H.; Hart, P.; Hommen, P.; Noisier, A.; Krzyzanowski, A.; Schuler, D.; Porfetye, A. T.; Akbarzadeh, M.; Vetter, I. R.; Adihou, H. Structure based design of bicyclic peptide inhibitors of RbAp48. Angew. Chem. Int. Ed. Engl. 2020. doi: 10.1002/anie.202009749 (In press).  doi: 10.1002/anie.202009749

    30. [30]

      Kalirajan, R.; Pandiselvi, A.; Gowramma, B.; Balachandran, P. In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer. Curr. Drug. Res. Rev. 2019, 11, 118–128.

    31. [31]

      Farnaby, W.; Koegl, M.; Roy, M. J.; Whitworth, C.; Diers, E.; Trainor, N.; Zollman, D.; Steurer, S.; Karolyi-Oezguer, J.; Riedmueller, C.; Gmaschitz, T.; Wachter, J.; Dank, C.; Galant, M.; Sharps, B.; Rumpel, K.; Traxler, E.; Gerstberger, T.; Schnitzer, R.; Petermann, O.; Greb, P.; Weinstabl, H.; Bader, G.; Zoephel, A.; Weiss-Puxbaum, A.; Ehrenhofer-Wolfer, K.; Wohrle, S.; Boehmelt, G.; Rinnenthal, J.; Arnhof, H.; Wiechens, N.; Wu, M. Y.; Owen-Hughes, T.; Ettmayer, P.; Pearson, M.; McConnell, D. B.; Ciulli, A. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 2019, 15, 672–680.

    32. [32]

      Xie, X.; Liu, J.; Wang, X. Design, synthesis and biological evaluation of (2΄, 5΄ and 3΄, 5΄-Linked) cGAMP analogs that activate stimulator of interferon Genes (STING). Molecules 2020, 25.

    33. [33]

      Yang, H.; Yan, R.; Jiang, Y.; Yang, Z.; Zhang, X.; Zhou, M.; Wu, X.; Zhang, T.; Zhang, J. Design, synthesis and biological evaluation of 2-amino-4-(1, 2, 4-triazol)pyridine derivatives as potent EGFR inhibitors to overcome TKI-resistance. Eur. J. Med. Chem. 2020, 187, 111966.

    34. [34]

      Yang, C. X.; Xing, L.; Chang, X.; Zhou, T. J.; Bi, Y. Y.; Yu, Z. Q.; Zhang, Z. Q.; Jiang, H. L. Synergistic platinum(Ⅱ) prodrug nanoparticles for enhanced breast cancer therapy. Mol. Pharm. 2020, 17, 1300–1309.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    5. [5]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    6. [6]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    7. [7]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    8. [8]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    9. [9]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    10. [10]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    11. [11]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    12. [12]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    13. [13]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    14. [14]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    15. [15]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    16. [16]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    17. [17]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

Metrics
  • PDF Downloads(5)
  • Abstract views(400)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return