Citation: Can HE, Tian-Pu SHENG, Feng-Rong DAI, Zhong-Ning CHEN. Sulfonylcalix[4]arene-based Coordination Supercontainers[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2077-2084. doi: 10.14102/j.cnki.0254–5861.2011–3029 shu

Sulfonylcalix[4]arene-based Coordination Supercontainers

  • Corresponding author: Feng-Rong DAI, dfr@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 16 November 2020

    Fund Project: the National Natural Science Foundation of China 21673239the National Natural Science Foundation of China 21501179

Figures(8)

  • Sulfonylcalix[4]arenes-based coordination containers, namely metal-organic supercontainers (MOSCs), are a new class of coordination containers constructed from the self-assembly of divalent metal ions, suitable carboxylate linkers, and sulfonylcalix[4]arenes container precursor. MOSCs feature both endo cavity surrounded by carboxylate linkers and exo cavities originated from the upper rim of sulfonylcalix[4]arenes. The molecular topologies and endo cavity of MOSCs are tuneable via judicious design of carboxylate linkers, while the modulation of endo cavity are accessible by chemical modification on the para substituent group of the sulfonylcalix[4]arenes. In this paper, recent advances and typical examples of design and functionalization of MOSCs are presented.
  • 加载中
    1. [1]

      Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 2000, 100, 853–907.  doi: 10.1021/cr9601324

    2. [2]

      Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.  doi: 10.1021/cr200077m

    3. [3]

      Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.  doi: 10.1021/cr3002824

    4. [4]

      Bi, Y.; Du, S.; Liao, W. Thiacalixarene-based nanoscale polyhedral coordination cages. Coord. Chem. Rev. 2014, 276, 61–72.  doi: 10.1016/j.ccr.2014.06.011

    5. [5]

      Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045.  doi: 10.1021/cr5005666

    6. [6]

      Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344.  doi: 10.1016/j.ccr.2016.09.010

    7. [7]

      Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.  doi: 10.1016/j.ccr.2019.07.005

    8. [8]

      Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997, 38, 3971–3972.  doi: 10.1016/S0040-4039(97)00792-2

    9. [9]

      Kajiwara, T.; Katagiri, K.; Hasegawa, M.; Ishii, A.; Ferbinteanu, M.; Takaishi, S.; Ito, T.; Yamashita, M.; Iki, N. Conformation-controlled luminescent properties of lanthanide clusters containing p-tert-butylsulfonylcalix[4]arene. Inorg. Chem. 2006, 45, 4880–4882.  doi: 10.1021/ic060397t

    10. [10]

      Karashimada, R.; Iki, N. Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising Tb(Ⅲ) and Yb(Ⅲ) enable f-f communication to enhance Yb(Ⅲ)-centred luminescence. Chem. Commun. 2016, 52, 3139–3142.  doi: 10.1039/C5CC09612J

    11. [11]

      Bi, Y.; Wang, X. T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Thiacalix[4]arene-supported planar Ln(4) (Ln = Tb(Ⅲ), Dy(Ⅲ)) clusters: toward luminescent and magnetic bifunctional materials. Inorg. Chem. 2009, 48, 11743–11747.  doi: 10.1021/ic9017807

    12. [12]

      Kajiwara, T.; Kobashi, T.; Shinagawa, R.; Ito, T.; Takaishi, S.; Yamashita, M.; Iki, N. Highly symmetrical tetranuclear cluster complexes supported by p-tert-butylsulfonylcalix[4]arene as a cluster-forming ligand. Eur. J. Inorg. Chem. 2006, 1765–1770.

    13. [13]

      Dai, F. R.; Wang, Z. Modular assembly of metal-organic supercontainers incorporating sulfonylcalixarenes. J. Am. Chem. Soc. 2012, 134, 8002–8005.  doi: 10.1021/ja300095j

    14. [14]

      Du, S.; Hu, C.; Xiao, J. C.; Tan, H.; Liao, W. A giant coordination cage based on sulfonylcalix[4]arenes. Chem. Commun. 2012, 48, 9177–9179.  doi: 10.1039/c2cc34265k

    15. [15]

      Du, S.; Yu, T. Q.; Liao, W.; Hu, C. Structure modeling, synthesis and X-ray diffraction determination of an extra-large calixarene-based coordination cage and its application in drug delivery. Dalton Trans. 2015, 44, 14394–14402.  doi: 10.1039/C5DT01526J

    16. [16]

      Fang, Y.; Li, J.; Togo, T.; Jin, F.; Xiao, Z.; Liu, L.; Drake, H.; Lian, X.; Zhou, H. C. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem. 2018, 4, 555–563.  doi: 10.1016/j.chempr.2018.01.004

    17. [17]

      Fang, Y.; Xiao, Z.; Li, J.; Lollar, C.; Liu, L.; Lian, X.; Yuan, S.; Banerjee, S.; Zhang, P.; Zhou, H. C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew. Chem. Int. Ed. 2018, 57, 5283–5287.  doi: 10.1002/anie.201712372

    18. [18]

      Fang, Y.; Xiao, Z.; Kirchon, A.; Li, J.; Jin, F.; Togo, T.; Zhang, L.; Zhu, C.; Zhou, H. C. Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chem. Sci. 2019, 10, 3529–3534.  doi: 10.1039/C8SC05315D

    19. [19]

      Fang, Y.; Lian, X.; Huang, Y.; Fu, G.; Xiao, Z.; Wang, Q.; Nan, B.; Pellois, J. P.; Zhou, H. C. Investigating subcellular compartment targeting effect of porous coordination cages for enhancing cancer nanotherapy. Small 2018, 14, e1802709.  doi: 10.1002/smll.201802709

    20. [20]

      Gong, W.; Chu, D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Permanent porous hydrogen-bonded frameworks with two types of Bronsted acid sites for heterogeneous asymmetric catalysis. Nat. Commun. 2019, 10, 600.  doi: 10.1038/s41467-019-08416-6

    21. [21]

      Dai, F. R.; Sambasivam, U.; Hammerstrom, A. J.; Wang, Z. Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior. J. Am. Chem. Soc. 2014, 136, 7480–7491.  doi: 10.1021/ja502839b

    22. [22]

      Tan, C.; Jiao, J.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem. Int. Ed. 2018, 57, 2085–2090.  doi: 10.1002/anie.201711310

    23. [23]

      Dai, F. R.; Becht, D. C.; Wang, Z. Modulating guest binding in sulfonylcalixarene-based metal-organic supercontainers. Chem. Commun. 2014, 50, 5385–5387.  doi: 10.1039/C3CC47420H

    24. [24]

      Sun, C. Z.; Cheng, L. J.; Qiao, Y.; Zhang, L. Y.; Chen, Z. N.; Dai, F. R.; Lin, W.; Wang, Z. Stimuli-responsive metal-organic supercontainers as synthetic proton receptors. Dalton Trans. 2018, 47, 10256–10263.  doi: 10.1039/C8DT01900B

    25. [25]

      Zhang, G.; Zhu, X.; Liu, M.; Liao, W. A window frame-like square constructed by bridging Co4-(TC4A-SO2) SBUs with 1, 3-bis(2H-tertazol-5-yl)benzene. J. Mol. Struct. 2018, 1151, 29–33.  doi: 10.1016/j.molstruc.2017.09.024

    26. [26]

      Dai, F. R.; Qiao, Y.; Wang, Z. Designing structurally tunable and functionally versatile synthetic supercontainers. Inorg. Chem. Front. 2016, 3, 243–249.

    27. [27]

      Qiao, Y.; Zhang, L.; Li, J.; Lin, W.; Wang, Z. Switching on supramolecular catalysis via cavity mediation and electrostatic regulation. Angew. Chem. Int. Ed. 2016, 55, 12778–12782.  doi: 10.1002/anie.201606847

    28. [28]

      Cheng, L. J.; Fan, X. X.; Li, Y. P.; Wei, Q. H.; Dai, F. R.; Chen, Z. N.; Wang, Z. Engineering solid-state porosity of synthetic supercontainers via modification of exo-cavities. Inorg. Chem. Commun. 2017, 78, 61–64.  doi: 10.1016/j.inoche.2017.03.005

    29. [29]

      Sun, C. Z.; Sheng, T. P.; Dai, F. R.; Chen, Z. N. Sulfonylcalixaren-based ortho-dicarboxylate-bridged coordination containers for guest encapsulation and separation. Cryst. Growth Des. 2019, 19, 1144–1148.  doi: 10.1021/acs.cgd.8b01633

    30. [30]

      Bhuvaneswari, N.; Annamalai, K. P.; Dai, F. R.; Chen, Z. N. Pyridinium functionalized coordination containers as highly efficient electrocatalysts for sustainable oxygen evolution. J. Mater. Chem. A 2017, 5, 23559–23565.  doi: 10.1039/C7TA05797K

    31. [31]

      Bhuvaneswari, N.; Dai, F. R.; Chen, Z. N. Sensitive and specific guest recognition through pyridinium-modification in spindle-like coordination containers. Chem. Eur. J. 2018, 24, 6580–6585.  doi: 10.1002/chem.201705210

    32. [32]

      Wang, S.; Gao, X.; Hang, X.; Zhu, X.; Han, H.; Liao, W.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.  doi: 10.1021/jacs.6b11218

    33. [33]

      Liu, M.; Liao, W. P.; Hu, C. H.; Du, S. C.; Zhang, H. J. Calixarene-based nanoscale coordination cages. Angew. Chem. Int. Ed. 2012, 51, 1585–1588.  doi: 10.1002/anie.201106732

    34. [34]

      Xiong, K.; Jiang, F.; Gai, Y.; Yuan, D.; Chen, L.; Wu, M.; Su, K.; Hong, M. Truncated octahedral coordination cage incorporating six tetranuclear-metal building blocks and twelve linear edges. Chem. Sci. 2012, 3, 2321–2325.  doi: 10.1039/c2sc20264f

    35. [35]

      Bi, Y.; Wang, S.; Liu, M.; Du, S.; Liao, W. A tetragonal prismatic {Co32} nanocage based on thiacalixarene. Chem. Commun. 2013, 49, 6785–6787.  doi: 10.1039/c3cc43347a

    36. [36]

      Hang, X.; Liu, B.; Zhu, X.; Wang, S.; Han, H.; Liao, W.; Liu, Y.; Hu, C. Discrete {Ni40} coordination cage: a calixarene-based Johnson-type (J17) hexadecahedron. J. Am. Chem. Soc. 2016, 138, 2969–2972.  doi: 10.1021/jacs.6b00695

    37. [37]

      Geng, D.; Han, X.; Bi, Y.; Qin, Y.; Li, Q.; Huang, L.; Zhou, K.; Song, L.; Zheng, Z. Merohedral icosahedral M48 (M = Co, Ni) cage clusters supported by thiacalix[4]arene. Chem. Sci. 2018, 9, 8535–8541.  doi: 10.1039/C8SC03193B

    38. [38]

      Su, K.; Jiang, F.; Qian, J.; Wu, M.; Gai, Y.; Pan, J.; Yuan, D.; Hong, M. Open pentameric calixarene nanocage. Inorg. Chem. 2013, 53, 18–20.

    39. [39]

      Wang, S.; Gao, X.; Hang, X.; Zhu, X.; Han, H.; Li, X.; Liao, W.; Chen, W. Calixarene-based {Ni18} coordination wheel: highly efficient electrocatalyst for the glucose oxidation and template for the homogenous cluster fabrication. J. Am. Chem. Soc. 2018, 140, 6271–6277.  doi: 10.1021/jacs.7b13193

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    6. [6]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    15. [15]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    16. [16]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    19. [19]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(10)
  • Abstract views(319)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return