Citation: Can HE, Tian-Pu SHENG, Feng-Rong DAI, Zhong-Ning CHEN. Sulfonylcalix[4]arene-based Coordination Supercontainers[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2077-2084. doi: 10.14102/j.cnki.0254–5861.2011–3029 shu

Sulfonylcalix[4]arene-based Coordination Supercontainers

  • Corresponding author: Feng-Rong DAI, dfr@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 16 November 2020

    Fund Project: the National Natural Science Foundation of China 21673239the National Natural Science Foundation of China 21501179

Figures(8)

  • Sulfonylcalix[4]arenes-based coordination containers, namely metal-organic supercontainers (MOSCs), are a new class of coordination containers constructed from the self-assembly of divalent metal ions, suitable carboxylate linkers, and sulfonylcalix[4]arenes container precursor. MOSCs feature both endo cavity surrounded by carboxylate linkers and exo cavities originated from the upper rim of sulfonylcalix[4]arenes. The molecular topologies and endo cavity of MOSCs are tuneable via judicious design of carboxylate linkers, while the modulation of endo cavity are accessible by chemical modification on the para substituent group of the sulfonylcalix[4]arenes. In this paper, recent advances and typical examples of design and functionalization of MOSCs are presented.
  • 加载中
    1. [1]

      Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 2000, 100, 853–907.  doi: 10.1021/cr9601324

    2. [2]

      Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.  doi: 10.1021/cr200077m

    3. [3]

      Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.  doi: 10.1021/cr3002824

    4. [4]

      Bi, Y.; Du, S.; Liao, W. Thiacalixarene-based nanoscale polyhedral coordination cages. Coord. Chem. Rev. 2014, 276, 61–72.  doi: 10.1016/j.ccr.2014.06.011

    5. [5]

      Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045.  doi: 10.1021/cr5005666

    6. [6]

      Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344.  doi: 10.1016/j.ccr.2016.09.010

    7. [7]

      Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.  doi: 10.1016/j.ccr.2019.07.005

    8. [8]

      Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997, 38, 3971–3972.  doi: 10.1016/S0040-4039(97)00792-2

    9. [9]

      Kajiwara, T.; Katagiri, K.; Hasegawa, M.; Ishii, A.; Ferbinteanu, M.; Takaishi, S.; Ito, T.; Yamashita, M.; Iki, N. Conformation-controlled luminescent properties of lanthanide clusters containing p-tert-butylsulfonylcalix[4]arene. Inorg. Chem. 2006, 45, 4880–4882.  doi: 10.1021/ic060397t

    10. [10]

      Karashimada, R.; Iki, N. Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising Tb(Ⅲ) and Yb(Ⅲ) enable f-f communication to enhance Yb(Ⅲ)-centred luminescence. Chem. Commun. 2016, 52, 3139–3142.  doi: 10.1039/C5CC09612J

    11. [11]

      Bi, Y.; Wang, X. T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Thiacalix[4]arene-supported planar Ln(4) (Ln = Tb(Ⅲ), Dy(Ⅲ)) clusters: toward luminescent and magnetic bifunctional materials. Inorg. Chem. 2009, 48, 11743–11747.  doi: 10.1021/ic9017807

    12. [12]

      Kajiwara, T.; Kobashi, T.; Shinagawa, R.; Ito, T.; Takaishi, S.; Yamashita, M.; Iki, N. Highly symmetrical tetranuclear cluster complexes supported by p-tert-butylsulfonylcalix[4]arene as a cluster-forming ligand. Eur. J. Inorg. Chem. 2006, 1765–1770.

    13. [13]

      Dai, F. R.; Wang, Z. Modular assembly of metal-organic supercontainers incorporating sulfonylcalixarenes. J. Am. Chem. Soc. 2012, 134, 8002–8005.  doi: 10.1021/ja300095j

    14. [14]

      Du, S.; Hu, C.; Xiao, J. C.; Tan, H.; Liao, W. A giant coordination cage based on sulfonylcalix[4]arenes. Chem. Commun. 2012, 48, 9177–9179.  doi: 10.1039/c2cc34265k

    15. [15]

      Du, S.; Yu, T. Q.; Liao, W.; Hu, C. Structure modeling, synthesis and X-ray diffraction determination of an extra-large calixarene-based coordination cage and its application in drug delivery. Dalton Trans. 2015, 44, 14394–14402.  doi: 10.1039/C5DT01526J

    16. [16]

      Fang, Y.; Li, J.; Togo, T.; Jin, F.; Xiao, Z.; Liu, L.; Drake, H.; Lian, X.; Zhou, H. C. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem. 2018, 4, 555–563.  doi: 10.1016/j.chempr.2018.01.004

    17. [17]

      Fang, Y.; Xiao, Z.; Li, J.; Lollar, C.; Liu, L.; Lian, X.; Yuan, S.; Banerjee, S.; Zhang, P.; Zhou, H. C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew. Chem. Int. Ed. 2018, 57, 5283–5287.  doi: 10.1002/anie.201712372

    18. [18]

      Fang, Y.; Xiao, Z.; Kirchon, A.; Li, J.; Jin, F.; Togo, T.; Zhang, L.; Zhu, C.; Zhou, H. C. Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chem. Sci. 2019, 10, 3529–3534.  doi: 10.1039/C8SC05315D

    19. [19]

      Fang, Y.; Lian, X.; Huang, Y.; Fu, G.; Xiao, Z.; Wang, Q.; Nan, B.; Pellois, J. P.; Zhou, H. C. Investigating subcellular compartment targeting effect of porous coordination cages for enhancing cancer nanotherapy. Small 2018, 14, e1802709.  doi: 10.1002/smll.201802709

    20. [20]

      Gong, W.; Chu, D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Permanent porous hydrogen-bonded frameworks with two types of Bronsted acid sites for heterogeneous asymmetric catalysis. Nat. Commun. 2019, 10, 600.  doi: 10.1038/s41467-019-08416-6

    21. [21]

      Dai, F. R.; Sambasivam, U.; Hammerstrom, A. J.; Wang, Z. Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior. J. Am. Chem. Soc. 2014, 136, 7480–7491.  doi: 10.1021/ja502839b

    22. [22]

      Tan, C.; Jiao, J.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem. Int. Ed. 2018, 57, 2085–2090.  doi: 10.1002/anie.201711310

    23. [23]

      Dai, F. R.; Becht, D. C.; Wang, Z. Modulating guest binding in sulfonylcalixarene-based metal-organic supercontainers. Chem. Commun. 2014, 50, 5385–5387.  doi: 10.1039/C3CC47420H

    24. [24]

      Sun, C. Z.; Cheng, L. J.; Qiao, Y.; Zhang, L. Y.; Chen, Z. N.; Dai, F. R.; Lin, W.; Wang, Z. Stimuli-responsive metal-organic supercontainers as synthetic proton receptors. Dalton Trans. 2018, 47, 10256–10263.  doi: 10.1039/C8DT01900B

    25. [25]

      Zhang, G.; Zhu, X.; Liu, M.; Liao, W. A window frame-like square constructed by bridging Co4-(TC4A-SO2) SBUs with 1, 3-bis(2H-tertazol-5-yl)benzene. J. Mol. Struct. 2018, 1151, 29–33.  doi: 10.1016/j.molstruc.2017.09.024

    26. [26]

      Dai, F. R.; Qiao, Y.; Wang, Z. Designing structurally tunable and functionally versatile synthetic supercontainers. Inorg. Chem. Front. 2016, 3, 243–249.

    27. [27]

      Qiao, Y.; Zhang, L.; Li, J.; Lin, W.; Wang, Z. Switching on supramolecular catalysis via cavity mediation and electrostatic regulation. Angew. Chem. Int. Ed. 2016, 55, 12778–12782.  doi: 10.1002/anie.201606847

    28. [28]

      Cheng, L. J.; Fan, X. X.; Li, Y. P.; Wei, Q. H.; Dai, F. R.; Chen, Z. N.; Wang, Z. Engineering solid-state porosity of synthetic supercontainers via modification of exo-cavities. Inorg. Chem. Commun. 2017, 78, 61–64.  doi: 10.1016/j.inoche.2017.03.005

    29. [29]

      Sun, C. Z.; Sheng, T. P.; Dai, F. R.; Chen, Z. N. Sulfonylcalixaren-based ortho-dicarboxylate-bridged coordination containers for guest encapsulation and separation. Cryst. Growth Des. 2019, 19, 1144–1148.  doi: 10.1021/acs.cgd.8b01633

    30. [30]

      Bhuvaneswari, N.; Annamalai, K. P.; Dai, F. R.; Chen, Z. N. Pyridinium functionalized coordination containers as highly efficient electrocatalysts for sustainable oxygen evolution. J. Mater. Chem. A 2017, 5, 23559–23565.  doi: 10.1039/C7TA05797K

    31. [31]

      Bhuvaneswari, N.; Dai, F. R.; Chen, Z. N. Sensitive and specific guest recognition through pyridinium-modification in spindle-like coordination containers. Chem. Eur. J. 2018, 24, 6580–6585.  doi: 10.1002/chem.201705210

    32. [32]

      Wang, S.; Gao, X.; Hang, X.; Zhu, X.; Han, H.; Liao, W.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.  doi: 10.1021/jacs.6b11218

    33. [33]

      Liu, M.; Liao, W. P.; Hu, C. H.; Du, S. C.; Zhang, H. J. Calixarene-based nanoscale coordination cages. Angew. Chem. Int. Ed. 2012, 51, 1585–1588.  doi: 10.1002/anie.201106732

    34. [34]

      Xiong, K.; Jiang, F.; Gai, Y.; Yuan, D.; Chen, L.; Wu, M.; Su, K.; Hong, M. Truncated octahedral coordination cage incorporating six tetranuclear-metal building blocks and twelve linear edges. Chem. Sci. 2012, 3, 2321–2325.  doi: 10.1039/c2sc20264f

    35. [35]

      Bi, Y.; Wang, S.; Liu, M.; Du, S.; Liao, W. A tetragonal prismatic {Co32} nanocage based on thiacalixarene. Chem. Commun. 2013, 49, 6785–6787.  doi: 10.1039/c3cc43347a

    36. [36]

      Hang, X.; Liu, B.; Zhu, X.; Wang, S.; Han, H.; Liao, W.; Liu, Y.; Hu, C. Discrete {Ni40} coordination cage: a calixarene-based Johnson-type (J17) hexadecahedron. J. Am. Chem. Soc. 2016, 138, 2969–2972.  doi: 10.1021/jacs.6b00695

    37. [37]

      Geng, D.; Han, X.; Bi, Y.; Qin, Y.; Li, Q.; Huang, L.; Zhou, K.; Song, L.; Zheng, Z. Merohedral icosahedral M48 (M = Co, Ni) cage clusters supported by thiacalix[4]arene. Chem. Sci. 2018, 9, 8535–8541.  doi: 10.1039/C8SC03193B

    38. [38]

      Su, K.; Jiang, F.; Qian, J.; Wu, M.; Gai, Y.; Pan, J.; Yuan, D.; Hong, M. Open pentameric calixarene nanocage. Inorg. Chem. 2013, 53, 18–20.

    39. [39]

      Wang, S.; Gao, X.; Hang, X.; Zhu, X.; Han, H.; Li, X.; Liao, W.; Chen, W. Calixarene-based {Ni18} coordination wheel: highly efficient electrocatalyst for the glucose oxidation and template for the homogenous cluster fabrication. J. Am. Chem. Soc. 2018, 140, 6271–6277.  doi: 10.1021/jacs.7b13193

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    5. [5]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    10. [10]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    17. [17]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

Metrics
  • PDF Downloads(10)
  • Abstract views(213)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return