Citation: Min-Min LIU, Na-Ting HE, Hong-Xu GUO, Shao-Ming YING, Zhang-Xu CHEN. Microwave Pyrolysis and Electrochemical Supercapacitor of S-doped g-C3N4 Nanoparticles[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 806-810. doi: 10.14102/j.cnki.0254–5861.2011–3016 shu

Microwave Pyrolysis and Electrochemical Supercapacitor of S-doped g-C3N4 Nanoparticles

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn
  • Received Date: 29 October 2020
    Accepted Date: 21 December 2020

    Fund Project: the Natural Science Foundation of Fujian Province 2020J01803Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry FJKL_FBCM202004the Fujian Provincial Key Laboratory of Ecotoxicological Effects and Control of New pollutants PY19001

Figures(5)

  • In this study, S-doped g-C3N4 nanoparticles were successfully prepared by one-step solid-state microwave synthesis. The detailed characterizations through XRD, FT-IR, SEM and XPS were studied. In addition, the electrochemical properties as supercapacitor of the sample were tested by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The results showed a high specific capacitance of 691 F/g at current density of 4 A/g in 2 M KOH + 0.15 M K3[Fe(CN)6] electrolyte. This study shows that the microwave synthesis is a promising way to design carbon-based electrodes for supercapacitor.
  • 加载中
    1. [1]

      Wu, N.; Wang, Y.; Wu, J.; He, K.; Peng, Y.; Fu, Z. Globalization of China's air environmental protection industry under the belt and road initiative. Strategic Study of CAE. 2019, 21, 39–46.

    2. [2]

      Satpathya, S.; Dasa, S.; Bhattacharyya, B. K. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors. J. Energy Storage 2020, 27, 1–13.

    3. [3]

      Ashritha, M. G.; Hareesh, K. A review on graphitic carbon nitride based binary nanocomposites as supercapacitors. J. Energy Storage 2020, 32, 1–25.

    4. [4]

      Fronczak, M. Adsorption performance of graphitic carbon nitride-based materials: current state of the art. J. Environ. Chem. Eng. 2020, 8, 2213–3437.

    5. [5]

      Babu, P.; Mohanty, S.; Naik, B.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.  doi: 10.1021/acsaem.8b00956

    6. [6]

      Lin, Z.; Wang, K.; Wang, X.; Wang, S.; Cao, S. Carbon-coated graphitic carbon nitride nanotubes for supercapacitor applications. ACS Appl. Nano. Mater. 2020, 3, 7016–7028.  doi: 10.1021/acsanm.0c01340

    7. [7]

      Li, J.; Qi, Y.; Mei, Y.; Ma, S.; Li, Q.; Xin, B.; Yao, T.; Wu, J. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity. J. Colloid Interf. Sci. 2020, 566, 495–504.  doi: 10.1016/j.jcis.2020.01.102

    8. [8]

      Maślana, K.; Kaleńczuk, R. J.; Zielińska, B.; Mijowska, E. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials 2020, 13, 1–12.
       

    9. [9]

      Ghaemmaghami, M.; Mohammadi, R. Review article carbon nitride as a new way to facilitate the next generation of carbon-based supercapacitors. Sustain. Energy Fuels 2019, 3, 2176–2204.  doi: 10.1039/C9SE00313D

    10. [10]

      Jiang, W.; Wang, H.; Zhang, X.; Zhu, Y.; Xie, Y. Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Sci. China Chem. 2018, 61, 1205–1213.  doi: 10.1007/s11426-018-9292-7

    11. [11]

      Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials (review). Carbon. 2019, 141, 580–607.  doi: 10.1016/j.carbon.2018.09.082

    12. [12]

      Zhang, Y.; Cui, Y.; Liu, S.; Fan, L.; Zhou, N.; Peng, P.; Wang, Y.; Guo, F.; Min, M.; Cheng, Y.; Liu, Y.; Lei, H.; Chen, P.; Li, B.; Ruan, R. Fast microwave-assisted pyrolysis of wastes for biofuels production – a review. Bioresource Technol. 2020, 297, 1873–2976.

    13. [13]

      Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Wang, X.; Antonietti, M. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 2011, 21, 13032–13039.  doi: 10.1039/c1jm11961c

    14. [14]

      Jiang, H.; Zhao, T.; Li, C. Z.; Ma, J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J. Mater. Chem. 2011, 21, 3818−3823.  doi: 10.1039/c0jm03830j

    15. [15]

      Wang, J.; Zhang, C.; Shen, Y.; Zhou, Z.; Yu, J.; Li, Y.; Wei, W.; Liu, S.; Zhang, Y. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A 2015, 3, 5126–5131.  doi: 10.1039/C4TA06778A

  • 加载中
    1. [1]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    2. [2]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    6. [6]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    15. [15]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(2)
  • Abstract views(398)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return