Citation: Ning XIAO, Lei HAN, Yi-Hang WEN, Le-Jia WANG, Xun-Wen XIAO. Syntheses, Structures and Photocurrent Response Properties of Two Crystals Based on Tetrathiafulvalene Derivatives[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 759-766. doi: 10.14102/j.cnki.0254–5861.2011–3011 shu

Syntheses, Structures and Photocurrent Response Properties of Two Crystals Based on Tetrathiafulvalene Derivatives

  • Corresponding author: Yi-Hang WEN, wyh@zjnu.edu.cn
  • Received Date: 26 October 2020
    Accepted Date: 8 December 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY18B020016Ningbo Science and Technology Innovation 2025 2018B10033

Figures(7)

  • In this paper, two compounds [Zn22+(2, 6-bis(4΄-pyridyl)-TTF)(TPA)22-] (1) and [Cd2+(2, 6(7)-bis(4΄-pyridyl)-TTF)(TPA)2-(H2O)2] (TTF = tetrathiafulvalene, TPA = terephthalic acid) (2) were synthesized by using solvothermal method and characterized by single-crystal X-ray. The purity of the two compounds was confirmed by their PXRD data. We also tested the photocurrent responses of these two compounds, and found they could generate photocurrent signal when exposed to light, but the photocurrent intensity of compound 2 is significantly greater than that of 1. From the crystal structure analysis, the possible reason for this phenomenon is that 2 has a more compact ligand arrangement than 1, leading to a higher carrier density and easier excitation.
  • 加载中
    1. [1]

      Roy, S.; Huang, Z.; Bhunia, A.; Castner, A.; Gupta, A. K.; Zou, X.; Ott, S. Electrocatalytic hydrogen evolution from a cobaloxime-based metal-organic framework thin film. J. Am. Chem. Soc. 2019, 141, 15942−15950.  doi: 10.1021/jacs.9b07084

    2. [2]

      Ma, X.; Liu, H.; Wen, S.; Xie, Q.; Li, L.; Jin, J.; Wang, X.; Zhao, B.; Song, W. Ultra-sensitive SERS detection, rapid selective adsorption and degradation of cationic dyes on multifunctional magnetic metal-organic framework-based composite. Nanotechnology 2020, 31, 315501-13.  doi: 10.1088/1361-6528/ab8a8f

    3. [3]

      He, H.; Zhu, Q.; Li, C.; Du, M. Design of a highly-stable pillar-layer zinc(Ⅱ) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water. Cryst. Growth Des. 2019, 19, 694−703.  doi: 10.1021/acs.cgd.8b01271

    4. [4]

      Li, Y.; Zhang, X.; Lan, J.; Xu, P.; Sun, J. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorg. Chem. 2019, 58, 13917–13926.  doi: 10.1021/acs.inorgchem.9b01762

    5. [5]

      Gholipour-Ranjbar, H.; Soleimani, M.; Naderi, H. R. Application of Ni/Co-based metal-organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J. Chem. 2016, 40, 9187–9193.  doi: 10.1039/C6NJ01449F

    6. [6]

      Su, J.; Yuan, S.; Wang, T.; Lollar, C. T.; Zuo, J.; Zhang, J.; Zhou, H. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles. Chem. Sci. 2020, 11, 1918–1925.  doi: 10.1039/C9SC06009J

    7. [7]

      Shen, W.; Xiao, X.; Ye, F.; Wang, M.; Wen, Y. Synthesis, structure and electric property of a 3D supramolecular Co coordination complex. Chin. J. Struct. Chem. 2018, 37, 1829–1833.

    8. [8]

      Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. J. Am. Chem. Soc. 2012, 134, 12932–12935.  doi: 10.1021/ja3059827

    9. [9]

      Wang, H.; Ge, J.; Hua, C.; Jiao, C.; Wu, Y.; Leong, C. F.; D'Alessandro, D. M.; Liu, T.; Zuo, J. Photo- and electronically switchable spin-crossover iron(Ⅱ) metal-organic frameworks based on a tetrathiafulvalene ligand. Angew. Chem. Int. Ed. 2017, 56, 5465–5470.  doi: 10.1002/anie.201611824

    10. [10]

      Wang, R.; Kang, L.; Xiong, J.; Dou, X.; Chen, X.; Zou, J.; You, X. Structures and physical properties of oligomeric and polymeric metal complexes based on bis(pyridyl)-substituted TTF ligands and an inorganic analogue. Dalton Trans. 2011, 40, 919–926.  doi: 10.1039/C0DT00739K

    11. [11]

      Han, Y.; Zhang, J.; Lin, Y.; Dai, J.; Jin, G. Synthesis and characterization of half-sandwich iridium complexes containing 2, 6(7)-bis(4-pyridyl)-1, 4, 5, 8-tetrathiafulvalene and ancillary ortho-carborane-1, 2-dichalcogenolato ligands. J. Organomet. Chem. 2007, 692, 4545–4550.  doi: 10.1016/j.jorganchem.2007.04.034

    12. [12]

      CrysAlisPro. Rigaku Oxford Diffraction 2015.

    13. [13]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    14. [14]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

    15. [15]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.

    16. [16]

      Wang, J.; Cao, Z.; Tang, L.; Wang, X.; Hou, X.; Ju, P.; Zhang, E. Two metal ion-controlled Zn(Ⅱ)/Cd(Ⅱ) coordination polymers based on 1, 3, 5-benzenetricarboxylic acid. Chin. J. Struct. Chem. 2017, 10, 1617–1623.

    17. [17]

      Li, Z.; Yang, B.; Jiang, Y.; Yu, C.; Zhang, L. Metal-directed assembly of five 4 connected MOFs: one-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst. Growth Des. 2018, 18, 979−992.  doi: 10.1021/acs.cgd.7b01463

    18. [18]

      Ju, P.; Zhang, E.; Wang, X.; Yang, H.; Wang, J. A novel 3D Cd-based luminescence metal-organic framework: synthesis, structure and luminescent sensing properties. Chin. J. Struct. Chem. 2019, 38, 1578–1584.

    19. [19]

      Wang, X.; Li, X.; Pan, Y.; Liu, B.; Zhou, S. A new two-dimensional Cd(Ⅱ) complex assembled by 1, 3, 5-benzenetricarboxylic acid and 3-(2-pyridyl)pyrazole. Chin. J. Struct. Chem. 2019, 38, 1275–1282.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(1)
  • Abstract views(387)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return