Citation: Chen-Hui LIU, Wei-Hui FANG, Yao KANG, Jian ZHANG. Synthetic Strategies, Diverse Structures and Properties of Copper Halide Cluster-based Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2091-2101. doi: 10.14102/j.cnki.0254–5861.2011–3010 shu

Synthetic Strategies, Diverse Structures and Properties of Copper Halide Cluster-based Materials

  • Corresponding author: Wei-Hui FANG, fwh@fjirsm.ac.cn
  • Received Date: 26 October 2020
    Accepted Date: 17 November 2020

    Fund Project: the National Natural Science Foundation of China 21771181the National Natural Science Foundation of China 21973096Youth Innovation Promotion Association CAS 2017345

Figures(11)

  • Copper halide clusters have become one of the most prosperous cluster-based materials. They are not only widely used in the fields of photophysics and photochemistry, but also adsorption, catalysis, biology, etc. Herein, the recent progress in copper halide based chemistry is reviewed from three aspects. In the first place, we summarize the new synthesis strategies promoting the crystallization of copper halide cluster-based materials. Then, the structural diversity of the compounds is introduced according to the dimension of copper halogen clusters. Finally, we discuss the functionality of copper halide cluster-based materials including optical, catalytic and adsorption properties. In addition, perspectives on their potential applications are presented.
  • 加载中
    1. [1]

      Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H. S.; Konar, S. A stable multi-responsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner. Chem. Mater. 2015, 27, 5349–5360.  doi: 10.1021/acs.chemmater.5b01773

    2. [2]

      Wang, X.; Tian, X.; Zhang, Q.; Sun, P.; Wu, J.; Zhou, H.; Jin, B.; Yang, J.; Zhang, S.; Wang, C.; Tao, X.; Jiang, M.; Tian, Y. Assembly, two-photon absorption, and bioimaging of living cells of a cuprous cluster. Chem. Mater. 2011, 24, 954–961.

    3. [3]

      Hu, S.; Du, W.; Dai, J.; Wu, L.; Cui, C.; Fu, Z.; Wu, X. The syntheses and structures of two hexanuclear copper(Ⅱ) complexes with amino acids electronic supplementary information (ESI) available: packing diagrams for 1 and 2. J. Chem. Soc., Dalton Trans. 2001, 2963–2964.

    4. [4]

      Liu, M. M.; Hou, J. J.; Qi, Z. K.; Duan, L. N.; Ji, W. J.; Han, C. Y.; Zhang, X. M. Tuning of valence states, bonding types, hierarchical structures, and physical properties in copper/halide/isonicotinate system. Inorg. Chem. 2014, 53, 4130–4143.  doi: 10.1021/ic5001232

    5. [5]

      Yu, M.; Liu, C.; Li, S.; Zhao, Y.; Lv, J.; Zhuo, Z.; Jiang, F.; Chen, L.; Yu, Y.; Hong, M. Constructing multi-cluster copper(Ⅰ) halides using conformationally flexible ligands. Chem. Commun. 2020, 56, 7233–7236.  doi: 10.1039/D0CC02472D

    6. [6]

      Zhu, Q.; Shen, C.; Tan, C.; Sheng, T.; Hu, S.; Wu, X. A one-dimensional coordination polymer constructed from planar pentanuclear copper(Ⅱ) clusters with a flexible tripodal ligand. Dalton Trans. 2012, 41, 9604–9606.  doi: 10.1039/c2dt30912b

    7. [7]

      Zhu, Q.; Tian, C.; Shen, C.; Sheng, T.; Hu, S.; Wu, X. A three-dimensional coordination polymer based on linear trinuclear copper(Ⅱ) clusters featuring a ferromagnetic exchange interaction. CrystEngComm. 2013, 15, 2120–2126  doi: 10.1039/c2ce26461g

    8. [8]

      Jouaiti, A.; Geoffroy, M.; Bernardinelli, G. Mono- and Bi-dentate phosphaalkene ligands: structures of their copper(Ⅰ) chloride complexes. J. Chem. Soc. Dalton Trans. 1994, 1685–1688.

    9. [9]

      Brooks, N. R.; Blake, A. J.; Champness, N. R.; Cooke, P. A.; Hubberstey, P.; Proserpio, D. M.; Wilson, C.; Schröder, M. Discrete molecular and extended polymeric copper(Ⅰ) halide complexes of tetradentate thioether macrocycles. J. Chem. Soc., Dalton Trans. 2001, 456–465.

    10. [10]

      Wang, R. H.; Hong, M. C.; Luo, J. H.; Cao, R.; Weng, J. B. The first two novel metallomacrocycles constructed from cubane-like Cu4I4 cluster units and ditopic diamines. Eur. J. Inorg. Chem. 2002, 3097–3100.

    11. [11]

      Bi, M.; Li, G.; Hua, J.; Liu, Y.; Liu, X.; Hu, Y.; Shi, Z.; Feng, S. Two isomers with FSC topology constructed from Cu6I6(DABCO)4 and Cu8I8(DABCO)6 building blocks. Cryst. Growth Des. 2007, 7, 2066–2070.  doi: 10.1021/cg0700824

    12. [12]

      Barbieri, A.; Accorsi, G.; Armaroli, N. Luminescent complexes beyond the platinum group: the d10 avenue. Chem. Commun. 2008, 2185–2193.

    13. [13]

      Ford, P. C.; Cariati, E.; Bourassa, J. Photoluminescence properties of multinuclear copper(Ⅰ) compounds. Chem. Resv. 1999, 99, 3625−3647.

    14. [14]

      Yam, V. W. W.; Lo, K. K. W. Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 1999, 28, 323–334.  doi: 10.1039/a804249g

    15. [15]

      Hardt, H. D.; Pierr, A. Fluorescence thermochromism of pyridine copper iodides and copper iodide. Z. Anorg. Allg. Chem. 1973, 107–112.

    16. [16]

      Ford, P. C.; Vogle, A. Photochemical and photophysical properties of tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic configurations. Chem. Resv. 1993, 26, 220–226.  doi: 10.1021/ar00028a013

    17. [17]

      Vitale, M.; Ford, P. C. Luminescent mixed ligand copper(Ⅰ) clusters (CuI)n(L)m (L = pyridine, piperidine): thermodynamic control of molecular and supramolecular species. Coord. Chem. Rev. 2001, 219, 3–16.

    18. [18]

      Angelis, F. D.; Fantacci, S.; Sgamellotti, A.; Cariati, E.; Ugo, R.; Ford, P. C. Electronic transitions involved in the absorption spectrum and dual luminescence of tetranuclear cubane [Cu4I4(pyridine)4] cluster: a density functional theory/time-dependent density functional theory investigation. Inorg. Chem. 2006, 45, 10576–10584.  doi: 10.1021/ic061147f

    19. [19]

      Blake, A. J.; Brooks, N. R.; Champness, N. R.; Hanton, L. R.; Hubberstey, P.; Schroder, M. Copper(Ⅰ) halide supramolecular networks linked by N-heterocyclic donor bridging ligands. Pure Appl. Chem. 1998, 70, 2351–2357.  doi: 10.1351/pac199870122351

    20. [20]

      Peng, R.; Li, M.; Li, D. Copper(Ⅰ) halides: a versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010, 254, 1–18.  doi: 10.1016/j.ccr.2009.10.003

    21. [21]

      Hu, S.; Tong, M. L. Rational design and construction of the first tetrahedral net with photoluminescent Cu4I4 cubane cluster as the tetrahedral node. Dalton Trans. 2005, 1165–1167.

    22. [22]

      Feng, H.; Zhou, X. P.; Wu, T.; Li, D.; Yin, Y. G.; Ng, S. W. Hydrothermal synthesis of copper complexes of 4΄-pyridyl terpyridine: from discrete monomer to zigzag chain polymer. Inorg. Chim. Acta 2006, 359, 4027–4035.  doi: 10.1016/j.ica.2006.04.035

    23. [23]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.  doi: 10.1021/cr200324t

    24. [24]

      Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.  doi: 10.1039/c2cs35133a

    25. [25]

      Gu, Z. G.; Zhan, C.; Zhang, J.; Bu, X. Chiral chemistry of metal-camphorate frameworks. Chem. Soc. Rev. 2016, 45, 3122–3144.  doi: 10.1039/C6CS00051G

    26. [26]

      Wang, C.; Liu, C.; Tian, H. R.; Li, L. J.; Sun, Z. M. Designed cluster assembly of multidimensional titanium coordination polymers: syntheses, crystal structure and properties. Chem. -Eur. J. 2018, 24, 2952–2961.  doi: 10.1002/chem.201705013

    27. [27]

      Zeng, G.; Xing, S.; Wang, X.; Yang, Y.; Xiao, Y.; Li, Z.; Li, G.; Shi, Z.; Feng, S. Synthesis, structures and luminescence properties of 3d-4f heterometallic-organic frameworks (HMOFs) constructed from different copper halide clusters. CrystEngComm. 2016, 18, 4336–4342.  doi: 10.1039/C5CE02544C

    28. [28]

      Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.  doi: 10.1039/C7CS00511C

    29. [29]

      Liu, J. H.; Zhang, J.; Zhao, D.; Lin, L. D.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. The incorporation of heterovalent copper-oxo and copper-halide clusters for the fabrication of three porous cluster organic frameworks: syntheses, structures and iodine adsorption/release study. CrystEngComm. 2020, 22, 821–828.  doi: 10.1039/C9CE01745C

    30. [30]

      Zhang, J.; Bu, J. T.; Chen, S.; Wu, T.; Zheng, S.; Chen, Y.; Nieto, R. A.; Feng, P.; Bu, X. Urothermal synthesis of crystalline porous materials. Angew. Chem. Int. Ed. 2010, 49, 8876–8879.  doi: 10.1002/anie.201003900

    31. [31]

      Lin, L. D.; Li, Z.; Zhao, D.; Liu, J. H.; Li, X. X.; Zheng, S. T. Development of a new Lindqvist-like Fe6 cluster secondary building unit for MOFs. Chem. Commun. 2019, 55, 10729–10732.  doi: 10.1039/C9CC04999A

    32. [32]

      Liu, W.; Fang, Y.; Wei, G. Z.; Teat, S. J.; Xiong, K.; Hu, Z.; Lustig, W. P.; Li, J. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 2015, 137, 9400–9408.  doi: 10.1021/jacs.5b04840

    33. [33]

      Fu, W. F.; Gan, X.; Che, C. M.; Cao, Q. Y.; Zhou, Z. Y.; Zhu, N. N. Cuprophilic interactions in luminescent copper(Ⅰ) clusters with bridging bis(dicyclohexylphosphino)methane and iodide ligands: spectroscopic and structural investigations. Chem. -Eur. J. 2004, 10, 2228–2236.  doi: 10.1002/chem.200305657

    34. [34]

      Chen, B. L.; Mok, K. F.; Ng, S. C. Synthesis, crystal structures and dynamic NMR studies of novel trinuclear copper(Ⅰ) halide complexes with 2, 5-bis[(diphenylphosphino)-methyl]thiophene. J. Chem. Soc., Dalton Trans. 1998, 2861–2866.

    35. [35]

      Victoriano, L. I.; Garland, M. T.; Vega, A.; Lopez, C. Syntheses, properties, crystal and molecular structure of a novel neutral pentanuclear copper(Ⅰ) iodide species. Copper(Ⅰ) complexes with tetraethylthiuram monosulfide. J. Chem. Soc., Dalton Trans. 1998, 1127–1131.

    36. [36]

      Xue, X.; Wang, X. S.; Xiong, R. G.; You, X. Z.; Abrahams, B. F.; Che, C. M.; Ju, H. X. A cluster rearrangement of an open cubane (Cu4Br4) to a prismane (Cu6Br6) in a copper(Ⅰ)-olefin network. Angew. Chem. Int. Ed. 2002, 41, 2944–2946.  doi: 10.1002/1521-3773(20020816)41:16<2944::AID-ANIE2944>3.0.CO;2-Z

    37. [37]

      Amoore, J. J. M.; Hanton, L. R.; Spicer, M. D. Banded ribbons of Cu6I6 hexamers and multimodal thioether pyrazine ligands linked by self-complementary N⋅⋅⋅H–C synthons. Dalton Trans. 2003, 1056–1058.

    38. [38]

      Ohi, H.; Tachi, Y.; Kunimoto, T.; Itoh, S. Structure and photoluminescence property of two-dimensional coordination polymer complexes involving CuI6X6 (X = Cl, Br, I) hexagon prism cluster supported by a tripodal tripyridine ligand with 1, 3, 5-triethylbenzene spacer. Dalton Trans. 2005, 3146–3147.

    39. [39]

      Cariati, E.; Roberto, D.; Ugo, R.; Ford, P. C.; Galli, S.; Sironi, A. New structural motifs, unusual quenching of the emission, and second harmonic generation of copper(Ⅰ) iodide polymeric or oligomeric adducts with para-substituted pyridines or trans-stilbazoles. Inorg. Chem. 2005, 44, 4077–4085.  doi: 10.1021/ic050143s

    40. [40]

      Lobana, T. S.; Kaur, P.; Nishioka, T. Synthesis of an unprecedented bicapped adamantoid [Cu6(µ2-I)(µ3-I)4(µ4-I)(m-tolyl3P)4(CH3CN)2] cluster. Inorg. Chem. 2004, 43, 3766−3767.  doi: 10.1021/ic049903+

    41. [41]

      Pike, R. D.; Borne, B. D.; Maeyer, J. T.; Rheingold, A. L. 1, 3, 5-Triazine templated self-assembly of a hexameric copper(Ⅰ) chloride triphenyl phosphite core. Inorg. Chem. 2002, 41, 631−633.  doi: 10.1021/ic015605q

    42. [42]

      Cecconi, F.; Ghilardi, C. A.; Midoliini, S.; Orlandini, A. A heterometallic 'super-sandwich' containing a novel hexagonal Cu6 unit at the centre: synthesis and X-ray structure determination of [{MeC(CH2PPh2)3}CoP3](CuBr)6[P3Co{(Ph2PCH2)3CMe)]·2CH2CI2. J. Chem. Soc., Chem. Commun. 1982, 229–230.

    43. [43]

      Chong, J. H.; MacLachlan, M. J. Robust non-interpenetrating coordination frameworks from new shape-persistent building blocks. Inorg. Chem. 2006, 45, 1442−1444.  doi: 10.1021/ic052123w

    44. [44]

      Wu, T.; Li, M.; Li, D.; Huang, X. C. Anionic Cunin cluster-based architectures induced by in situ generated N-alkylated cationic triazolium salts. Cryst. Growth Des. 2008, 8, 568–574.  doi: 10.1021/cg070639f

    45. [45]

      Solntsev, P. V.; Sieler, J.; Krautscheid, H.; Domasevitch, K. V. Fused pyridazines: rigid multidentates for designing and fine-tuning the structure of hybrid organic/inorganic frameworks. Dalton Trans. 2004, 1153–1158.

    46. [46]

      Di Nicola, C.; Koutsantonis, G. A.; Pettinari, C.; Skelton, B. W.; Somers, N.; White, A. H. The structural definition of some novel adducts of stoichiometry CuX: dpex: MeCN (2: 1: 1)(n), X = (pseudo-) halogen, dppx = Ph2E(CH2)xEPh2, E = P, As, Sb. Inorg. Chim. Acta 2006, 359, 2159–2169.  doi: 10.1016/j.ica.2005.12.019

    47. [47]

      Kang, Y.; Wang, F.; Zhang, J.; Bu, X. Luminescent MTN-type cluster-organic framework with 2.6 nm cages. J. Am. Chem. Soc. 2012, 134, 17881–17884.  doi: 10.1021/ja308801n

    48. [48]

      Shan, X. C.; Jiang, F. L.; Yuan, D. Q.; Zhang, H. B.; Wu, M. Y.; Chen, L.; Wei, J.; Zhang, S. Q.; Jie, P.; Hong, M. C. A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chem. Sci. 2013, 4, 1484–1489.  doi: 10.1039/c3sc21995j

    49. [49]

      Zhang, Y.; He, X.; Zhang, J.; Feng, P. CuI cluster-based organic frameworks with unusual 4- and 5-connected topologies. Cryst. Growth Des. 2011, 11, 29–32.  doi: 10.1021/cg101321u

    50. [50]

      Fang, W. H.; Wang, J. F.; Zhang, L.; Zhang, J. Titanium-oxo cluster based precise assembly for multidimensional materials. Chem. Mater. 2017, 29, 2681–2684.  doi: 10.1021/acs.chemmater.7b00324

    51. [51]

      Wang, X. L.; Qin, C.; Wang, E. B.; Su, Z. M.; Li, Y. G.; Xu, L. Self-assembly of nanometer-scale [Cu24I10L12]14+ cages and ball-shaped Keggin clusters into a (4, 12)-connected 3D framework with photoluminescent and electrochemical properties. Angew. Chem. Int. Ed. 2006, 45, 7411–7414.  doi: 10.1002/anie.200603250

    52. [52]

      Li, M.; Li, Z.; Li, D. Unprecedented cationic copper(Ⅰ)-iodide aggregates trapped in "click" formation of anionic-tetrazolate-based coordination polymers. Chem. Commun. 2008, 7, 3390–3392.

    53. [53]

      Hard, H.; Mahdjour-Hassan-Abadi, F. [Cu5I7]2- - an isopolyanion with cyclic face-to-face linking of CuI4 tetrahedra. Angew. Chem. Int. Ed. 1984, 23, 378–379.  doi: 10.1002/anie.198403781

    54. [54]

      Mahdjour-Hassan-Abadi, F.; Hartl, H.; Fuchs, J. [Cu6I11]5- - a polyanion with trigonal-prismatic arrangement of six metal atoms. Angew. Chem. Int. Ed. 1984, 23, 514–515.  doi: 10.1002/anie.198405141

    55. [55]

      Su, C. Y.; Cai, Y. P.; Chen, C. L.; Lissner, F.; Kang, B. S.; Kaim, W. Self-assembly of trigonal-prismatic metallocages encapsulating BF4- or CuI32- as anionic guests: structures and mechanism of formation. Angew. Chem. Int. Ed. 2002, 41, 3370–3375.

    56. [56]

      Rath, N. P.; Holt, E. M. Copper(Ⅰ) iodide complexes of novel structure: [Cu4I6][Cu8I13]K7(12-crown-4)6, [Cu4I6]K2(15-crown-5)2, and [Cu3I4]K(dibenzo-24-crown-8). J. Chem. Soc., Chem. Commun. 1985, 665–667.

    57. [57]

      Rusanova, J. A.; Domasevitch, K. V.; Vassilyeva, O. Y.; Kokozay, V. N.; Rusanov, E. B.; Nedelko, S. G.; Chukova, O. V.; Ahrens, B.; Raithby, P. R. New luminescent copper(Ⅰ) halide complexes containing Rb+ complexes of 18-crown-6 as counter ions prepared from zerovalent copper. J. Chem. Soc., Dalton Trans. 2000, 2175–2182.

    58. [58]

      Fang, W. H.; Zhang, L.; Zhang, J. Assembly of titanium-oxo cations with copper-halide anions to form supersalt-type cluster-based materials. Chem. Commun. 2017, 53, 3949–3951.  doi: 10.1039/C7CC01443K

    59. [59]

      HQkansson, M.; Jagner, S. Preparation and structural characterization of Cu(CO)CI. Inorg. Chem. 1990, 29, 5241–5244.  doi: 10.1021/ic00351a021

    60. [60]

      Blake, A. J.; Brooks, N. R.; Champness, N. R.; Cooke, P. A.; Deveson, A. M.; Fenske, D.; Hubberstey, P.; Li, W. S.; Schröder, M. Controlling copper(Ⅰ) halide framework formation using N-donor bridging ligand symmetry: use of 1, 3, 5-triazine to construct architectures with threefold symmetry. J. Chem. Soc., Dalton Trans. 1999, 2103–2110.

    61. [61]

      Hikansson, M.; Jagner, S. A complex between isoprene and copper(Ⅰ) chloride: synthesis and structural characterization. Organometallics 1991, 10, 1317–1319.  doi: 10.1021/om00051a021

    62. [62]

      Cheng, J. K.; Yao, Y. G.; Zhang, J.; Li, Z. J.; Cai, Z. W.; Zhang, X. Y.; Chen, Z. N.; Chen, Y. B.; Kang, Y.; Qin, Y. Y.; Wen, Y. H. A simultaneous redox, alkylation, self-assembly reaction under solvothermal conditions afforded a luminescent copper(Ⅰ) chain polymer constructed of Cu3I4- and EtS-4-C5H4N+Et components (Et = CH3CH2). J. Am. Chem. Soc. 2004, 126, 7796–7797.  doi: 10.1021/ja048624i

    63. [63]

      Kang, Y.; Fang, W. H.; Zhang, L.; Zhang, J. A structure-directing method to prepare semiconductive zeolitic cluster-organic frameworks with Cu3I4 building units. Chem. Commun. 2015, 51, 8994–8997.  doi: 10.1039/C5CC02598B

    64. [64]

      Liu, J.; Tang, Y. H.; Wang, F.; Zhang, J. Syntheses of copper-iodine cluster-based frameworks for photocatalytic degradation of methylene blue. CrystEngComm. 2018, 20, 1232–1236.  doi: 10.1039/C7CE02192E

    65. [65]

      Hu, L. X.; Gao, M.; Wen, T.; Kang, Y.; Chen, S. Synthesis of Halide-modulated cuprous(Ⅰ) coordination polymers with mechanochromic and photocatalytic properties. Inorg. Chem. 2017, 56, 6507–6511.  doi: 10.1021/acs.inorgchem.7b00598

    66. [66]

      Horvbth, O. Photochemistry of copper complexes. Coord. Chem. Rev. 1994, 135, 303–325.

    67. [67]

      Zhang, X.; Liu, W.; Wei, G. Z.; Banerjee, D.; Hu, Z.; Li, J. Systematic approach in designing rare-earth-free hybrid semiconductor phosphors for general lighting applications. J. Am. Chem. Soc. 2014, 136, 14230–14236.  doi: 10.1021/ja507927a

    68. [68]

      Tan, Y. X.; He, Y. P.; Zhang, J. Cluster-organic framework materials as heterogeneous catalysts for high efficient addition reaction of diethylzinc to aromatic aldehydes. Chem. Mater. 2012, 24, 4711–4716.  doi: 10.1021/cm302953x

    69. [69]

      Tan, Y. X.; He, Y. P.; Zhang, J. Pore partition effect on gas sorption properties of an anionic metal-organic framework with exposed Cu2+ coordination sites. Chem. Commun. 2011, 47, 10647–10649.  doi: 10.1039/c1cc14118j

    70. [70]

      Hu, L. X.; Wang, F.; Kang, Y.; Zhang, J. Structural design of zeolitic cluster organic frameworks from hexamethylentetramine and copper-halide clusters. Cryst. Growth Des. 2016, 16, 7139–7144.  doi: 10.1021/acs.cgd.6b01364

    71. [71]

      Wen, T.; Zhang, D. X.; Ding, Q. R.; Zhang, H. B.; Zhang, J. Two luminescent Cu(Ⅰ) coordination polymers based on the 1-(4-tetrazolephenyl)imidazole ligand for sensing of nitrobenzene. Inorg. Chem. Front. 2014, 1, 389–392.  doi: 10.1039/c4qi00016a

    72. [72]

      Liu, J.; Wang, F.; Liu, L. Y.; Zhang, J. Interpenetrated three-dimensional copper-iodine cluster-based framework with enantiopure porphyrin-like templates. Inorg. Chem. 2016, 55, 1358–1360.  doi: 10.1021/acs.inorgchem.5b02692

    73. [73]

      Shi, D.; Zheng, R.; Sun, M. J.; Cao, X.; Sun, C. X.; Cui, C. J.; Liu, C. S.; Zhao, J.; Du, M. Semiconductive copper(Ⅰ)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem. Int. Ed. 2017, 56, 14637–14641.  doi: 10.1002/anie.201709869

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    9. [9]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    10. [10]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    13. [13]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    14. [14]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Meihui LiuXinyuan ZhouXiao LiZhenjie XueTie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875

    17. [17]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    18. [18]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

Metrics
  • PDF Downloads(8)
  • Abstract views(242)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return