-
[1]
Dasari, S.; Bernard, T. P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364−378.
doi: 10.1016/j.ejphar.2014.07.025
-
[2]
van den Berg, J. H.; Beijnen, J. H.; Balm, A. J. M.; Schellens, J. H. M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev. 2006, 32, 390−397.
doi: 10.1016/j.ctrv.2006.04.011
-
[3]
Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: an update on possible mechanisms and on available gastroprotective strategies. Eur. J. Pharmacol. 2018, 827, 49−57.
doi: 10.1016/j.ejphar.2018.03.009
-
[4]
Rajeswaran, A.; Trojan, A.; Burnand, B.; Giannelli, M. Efficacy and side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small cell lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer-J. Iaslc 2008, 59, 1−11.
doi: 10.1016/j.lungcan.2007.07.012
-
[5]
Milosavljevic, N.; Duranton, C.; Djerbi, N.; Puech, P. H.; Gounon, P.; Lagadic-Gossmann, D.; Dimanche-Boitrel, M. T.; Rauch, C.; Tauc, M.; Counillon, L.; Poët, M. Nongenomic effects of cisplatin: acute inhibition of mechanosensitive transporters and channels without actin remodeling. Cancer Res. 2010, 70, 7514−7522.
doi: 10.1158/0008-5472.CAN-10-1253
-
[6]
Levi, J. A.; Aroney, R. S.; Dalley, D. N. Haemolytic anaemia after cisplatin treatment. Br. Med. J. 1981, 282, 2003−2004.
doi: 10.1136/bmj.282.6281.2003
-
[7]
Karasawa, T.; Steyger, P. S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015, 237, 219−227.
doi: 10.1016/j.toxlet.2015.06.012
-
[8]
Banti, C. N.; Hadjikakou, S. K.; Sismanoglu, T.; Hadjiliadis, N. Anti-proliferative and antitumor activity of organotin(Ⅳ) compounds. An overview of the last decade and future perspectives. J. Inorg. Biochem. 2019, 194, 114−152.
doi: 10.1016/j.jinorgbio.2019.02.003
-
[9]
Jiang, W. J.; Mo, T. Z.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X. Syntheses, crystal structures and in vitro anticancer activities of dibenzyltin compounds based on the N-(2-phenylacetic acid)-aroyl hydrazone. Chin. J. Struct. Chem. 2020, 39, 673−681.
-
[10]
Jiang, W.; Fan, S.; Zhou, Q.; Zhang, F.; Kuang, D.; Tan, Y. Diversity of complexes based on p-nitrobenzoylhydrazide, benzoylformic acid and diorganotin halides or oxides self-assemble: cytotoxicity, the induction of apoptosis in cancer cells and DNA-binding properties. Bioorg. Chem. 2020, 94, 103402.
doi: 10.1016/j.bioorg.2019.103402
-
[11]
Li, Y. X.; Yu, H. T.; Zeng, H. T.; Liu, M. Q.; Kuang, D. Z.; Tan, Y. X.; Jiang, W. J. Two new dibenzyltin complexes based on the 2-oxo-3-phenylpropionic acid arylformylhydrazone: syntheses, crystal structures and biological activity. Chin. J. Struct. Chem. 2019, 38, 1947−1955.
-
[12]
Jiang, W. J.; Tan, Y. X.; Yu, J. X.; Zhu, X. M.; Zhang, F. X.; Kuang, D. Z. Syntheses, crystal structures and biological activity of 2-oxo-3-phenylpropionic acid aroyl hydrazone di-2, 4-dichlorobenzyltin complexes. Chin. J. Inorg. Chem. 2016, 32, 1383−1390.
-
[13]
Sheldrick, G. M. SHELXL-97, A Program for Crystal Structure Refinement. Germany Geöttingen: University of Geöttingen 1997.
-
[14]
Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Mixed-ligand complexes of ruthenium(Ⅱ): factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051−3058.
doi: 10.1021/ja00190a046
-
[15]
Wu, Q.; Yin, H.; Yue, C.; Zhang, X.; Hong, M.; Cui, J. Synthesis, crystal structure, and bioactivity of two triphenylantimony derivatives with benzohydroxamic acid and N-phenylbenzohydroxamic acid. J. Coord. Chem. 2012, 65, 2098−2109.
doi: 10.1080/00958972.2012.688118
-
[16]
Yin, H.; Liu, H.; Hong, M. Synthesis, structural characterization and DNA-binding properties of organotin(Ⅳ) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3- or 4-aminobenzoic acid. J. Organomet. Chem. 2012, 713, 11−19.
doi: 10.1016/j.jorganchem.2012.03.027
-
[17]
Yan, C.; Zhang, J.; Liang, T.; Li, Q. Diorganotin(Ⅳ) complexes with 4-nitro-N-phthaloyl-glycine: synthesis, characterization, antitumor activity and DNA-binding studies. Biomed. Pharmacother. 2015, 71, 119−127.
doi: 10.1016/j.biopha.2015.02.027
-
[18]
Tan, Y. X.; Zhang, Z. J.; Feng, Y. L.; Yu, J. X.; Zhu, X. M.; Zhang, F. X.; Kuang, D. Z.; Jiang, W. J. Syntheses, crystal structures and biological activity of the 1D chain benzyltin complexes based on 2-oxo-propionic acid benzoyl hydrazone. J. Inorg. Organomet. P 2017, 27, 342−352.
doi: 10.1007/s10904-016-0477-5
-
[19]
Tan, Y. X.; Zhang, Z. J.; Liu, Y.; Yu, J. X.; Zhu, X. M.; Kuang, D. Z.; Jiang, W. J. Synthesis, crystal structure and biological activity of the Schiff base organotin(Ⅳ) complexes based on salicylaldehyde-o-aminophenol. J. Mol. Struct. 2017, 1149, 874−881.
doi: 10.1016/j.molstruc.2017.08.058
-
[20]
Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Fourth ed. Berlin Heidelberg: Springer-Verlag 2009, p69−242.
-
[21]
Basu Baul, T. S.; Addepalli, M. R.; Lyčka, A.; van Terwingen, S.; Englert, U. Synthesis, characterization and structural systematics in diorganotin complexes with O, N, O′-tris-chelating semirigid diaza-scaffolds: mono- vs. di-nuclear compounds. J. Organomet. Chem. 2020, 927, 121522−11.
doi: 10.1016/j.jorganchem.2020.121522
-
[22]
Zhang, Z. J.; Zeng, H. T.; Liu, Y.; Kuang, D. Z.; Zhang, F. X.; Tan, Y. X.; Jiang, W. J. Synthesis, crystal structure and anticancer activity of the dibutyltin(Ⅳ) oxide complexes containing substituted salicylaldehyde-o-aminophenol Schiff base with appended donor functionality. Inorg. Nano-Met. Chem. 2018, 48, 486−494.
doi: 10.1080/24701556.2019.1571513
-
[23]
Jiang, W. J.; Zhou, Q.; Liu, M. Q.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X. Microwave assisted synthesis of disubstituted benzyltin arylformylhydrazone complexes: anticancer activity and DNA-binding properties. Appl. Organomet. Chem. 2019, 33, e5092.