Citation: Hao-Miao LI, Jia-Le ZHAO, Deng-Meng SONG, Qing SHI, Ning WANG, Jun LI, Wen-Hua XU. Unusual Coordination Mode of Tetradentate Diiminedioxime Ligand in a Mononickel(Ⅱ) Complex: Synthesis, Characterization, and Computational Study[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 746-752. doi: 10.14102/j.cnki.0254–5861.2011–3002 shu

Unusual Coordination Mode of Tetradentate Diiminedioxime Ligand in a Mononickel(Ⅱ) Complex: Synthesis, Characterization, and Computational Study

  • Corresponding author: Qing SHI, chemnw@aliyun.com Wen-Hua XU, xuwenhua.qf@gmail.com
  • Received Date: 16 October 2020
    Accepted Date: 29 November 2020

    Fund Project: the Natural Science Foundation of China 21773184the Natural Science Foundation of China 21671158

Figures(5)

  • In this work, it is found that 1, 8-dihydroxyimino-1, 2, 7, 8-tetraphenyl-3, 6-diazocta-2, 6-diene (PhdoenH2) could react with nickel(Ⅱ) salt to yield a mononickel complex Ni(Phdoen) (1) with unusual [2N2O]-coordinated mode, while the analogous diimine-dioxime ligands usually form the [4N]-coordinated mode. The novel complex 1 has been carefully characterized by 1H NMR, elemental analysis, and X-ray diffraction structure analysis. The influences of the coordination modes on the structures and redox properties have been further investigated. Theoretical investigations revealed that the different coordination modes were ascribed to the thermodynamic properties of ligands.
  • 加载中
    1. [1]

      Tschugaeff, L. Ueber ein neues, empfindliches reagens auf nickel. Ber. Dtsch. Chem. Ges. 1905, 38, 2520‒2522.  doi: 10.1002/cber.19050380317

    2. [2]

      Chakravorty, A. Structural chemistry of transition metal complexes of oximes. Coord. Chem. Rev. 1974, 13, 1‒46.  doi: 10.1016/S0010-8545(00)80250-7

    3. [3]

      Kukushkin, V. Y.; Tudela, D.; Pombeiro, A. J. L. Metal-ion assisted reactions of oximes and reactivity of oxime-containing metal complexes. Coord. Chem. Rev. 1996, 156, 333‒362.  doi: 10.1016/0010-8545(95)01234-6

    4. [4]

      Schrauzer, G. N. Organocobalt chemistry of vitamin B12 model compounds (cobaloximes). Acc. Chem. Res. 1968, 1, 97‒103.  doi: 10.1021/ar50004a001

    5. [5]

      Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc. Chem. Res. 2015, 48, 1286‒1295.  doi: 10.1021/acs.accounts.5b00058

    6. [6]

      Hu, X.; Brunschwig, B. S.; Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 2007, 129, 8988‒8998.  doi: 10.1021/ja067876b

    7. [7]

      Song, D.; Li, B.; Li, X.; Sun, X.; Li, J.; Li, C.; Xu, T.; Zhu, Y.; Li, F.; Wang, N. Orthogonal supramolecular assembly triggered by inclusion and exclusion interactions with cucurbit[7]uril for photocatalytic H2 evolution. ChemSusChem. 2019, 13, 394‒399.

    8. [8]

      Andreiadis, E. S.; Jacques, P. A.; Tran, P. D.; Leyris, A.; Chavarot-Kerlidou, M.; Jousselme, B.; Matheron, M.; Pécaut, J.; Palacin, S.; Fontecave, M.; Artero, V. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nat. Chem. 2012, 5, 48‒53.

    9. [9]

      McCrory, C. C. L.; Uyeda, C.; Peters, J. C. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles. J. Am. Chem. Soc. 2012, 134, 3164‒3170.  doi: 10.1021/ja210661k

    10. [10]

      Basu, D.; Mazumder, S.; Niklas, J.; Baydoun, H.; Wanniarachchi, D.; Shi, X.; Staples, R. J.; Poluektov, O.; Schlegel, H. B.; Verani, C. N. Evaluation of the coordination preferences and catalytic pathways of heteroaxial cobalt oximes towards hydrogen generation. Chem. Sci. 2016, 7, 3264‒3278.  doi: 10.1039/C5SC04214C

    11. [11]

      Huo, P.; Uyeda, C.; Goodpaster, J. D.; Peters, J. C.; Miller, T. F. Breaking the correlation between energy costs and kinetic barriers in hydrogen evolution via a cobalt pyridine-diimine-dioxime catalyst. ACS Catal. 2016, 6, 6114‒6123.  doi: 10.1021/acscatal.6b01387

    12. [12]

      Cui, L.; Ono, T.; Morita, Y.; Hisaeda, Y. Electrocatalytic reactivity of imine/oxime-type cobalt complex for direct perfluoroalkylation of indole and aniline derivatives. Dalton Trans. 2020, 49, 7546‒7551.  doi: 10.1039/D0DT01377C

    13. [13]

      Guttentag, M.; Rodenberg, A.; Kopelent, R.; Probst, B.; Buchwalder, C.; Brandstätter, M.; Hamm, P.; Alberto, R. Photocatalytic H2 production with a rhenium/cobalt system in water under acidic conditions. Eur. J. Inorg. Chem. 2012, 2012, 59‒64.  doi: 10.1002/ejic.201100883

    14. [14]

      Simándi, L. I.; Simándi, T. M.; May, Z.; Besenyei, G. Catalytic activation of dioxygen by oximatocobalt(Ⅱ) and oximatoiron(Ⅱ) complexes for catecholase-mimetic oxidations of o-substituted phenols. Coord. Chem. Rev. 2003, 245, 85‒93.  doi: 10.1016/S0010-8545(03)00057-2

    15. [15]

      Uyeda, C.; Peters, J. C. Selective nitrite reduction at heterobimetallic CoMg complexes. J. Am. Chem. Soc. 2013, 135, 12023‒12031.  doi: 10.1021/ja4053653

    16. [16]

      Uyeda, C.; Peters, J. C. Access to formally Ni(Ⅰ) states in a heterobimetallic NiZn system. Chem. Sci. 2013, 4, 157‒163.  doi: 10.1039/C2SC21231E

    17. [17]

      Aly, M. M.; Stephanos, J. J. Factors influencing linkage isomerism of the oximato group in the Ni(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) complexes of vicinal oxime-imine ligands. J. Mol. Struct. 1993, 293, 75‒76.  doi: 10.1016/0022-2860(93)80018-Q

    18. [18]

      Emam, M. E. M.; Bekheit, M. M.; Moussa, M. N. H.; El-Hendawy, A. E. N. A. A physicochemical study of Schiff base metal complexes derived from α-benzylmonoxime. Transition Met. Chem. 1994, 19, 117‒118.

    19. [19]

      Bhula, R.; Weatherburn, D. C.; Gainsford, G. J. The crystal and molecular structure of 4, 4΄-(1, 2-ethanediyldinitrilo)-bis[(2, 3-pentanedione)-3, 3΄-dioximato] (2−)N4, N4΄, O3, O3΄ copper(Ⅱ). Inorg. Chim. Acta 1987, 128, L7‒L9.  doi: 10.1016/S0020-1693(00)84680-0

    20. [20]

      Uhlig, E.; Friedrich, M. Untersuchungen an oximkomplexen. Ⅲ. nickelchelate des bis-(diacetylmonoxim-imino)-propans-1, 3 und des bis-(diacetylmonoxim-imino)-äthans-1, 2. Anorg. Allg. Chem. 1966, 343, 299‒307.  doi: 10.1002/zaac.19663430510

    21. [21]

      Soleimani, E.; Taheri, S. A. N. Synthesis and characterization of monomeric and dimeric dihydroxo-bridged complexes of iron(Ⅱ) with α-benzilmonoxime. Asian J. Chem. 2011, 23, 1561‒1563.

    22. [22]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    23. [23]

      Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 146401‒4.  doi: 10.1103/PhysRevLett.91.146401

    24. [24]

      Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Phys. Chem. 1987, 86, 866‒872.  doi: 10.1063/1.452288

    25. [25]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297‒3305.  doi: 10.1039/b508541a

    26. [26]

      Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999‒3094.  doi: 10.1021/cr9904009

    27. [27]

      Moltved, K. A.; Kepp, K. P. Chemical bond energies of 3d transition metals studied by density functional theory. J. Chem. Theory Comput. 2018, 14, 3479‒3492.  doi: 10.1021/acs.jctc.8b00143

    28. [28]

      Martin, R. L. Natural transition orbitals. J. Phys. Chem. 2003, 118, 4775‒4777.  doi: 10.1063/1.1558471

    29. [29]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378‒6396.  doi: 10.1021/jp810292n

    30. [30]

      Spartan'10, Wavefunction, Inc., Irvine, CA.

    31. [31]

      Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490‒519.  doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    32. [32]

      Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Phys. Chem. 2013, 138, 034106‒18.  doi: 10.1063/1.4773581

    33. [33]

      Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps-a systematic infrastructure for reduced-scaling electronic structure methods. Ⅱ. linear scaling domain based pair natural orbital coupled cluster theory. J. Phys. Chem. 2016, 144, 024109‒10.  doi: 10.1063/1.4939030

    34. [34]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580‒592.  doi: 10.1002/jcc.22885

    35. [35]

      Neese, F. The ORCA program system. Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2011, 2, 73‒78.

    36. [36]

      Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2017, 8, e1327‒6.

    37. [37]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 01, Gaussian, Inc., Pittsburgh PA 2003.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    5. [5]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    10. [10]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    13. [13]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    14. [14]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    15. [15]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    19. [19]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    20. [20]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

Metrics
  • PDF Downloads(1)
  • Abstract views(309)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return