Citation: Hui FENG, Chang-Jun FENG. CoMFA Model of Anti-tumor Activity for Fluoroquinolon-3-yl s-Triazole Sulfide-ketone Derivatives and Implications for Molecular Design[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 703-710. doi: 10.14102/j.cnki.0254–5861.2011–3000 shu

CoMFA Model of Anti-tumor Activity for Fluoroquinolon-3-yl s-Triazole Sulfide-ketone Derivatives and Implications for Molecular Design

  • Corresponding author: Chang-Jun FENG, fengcj@xzit.edu.cn
  • Received Date: 12 October 2020
    Accepted Date: 26 November 2020

    Fund Project: the National Natural Science Foundation of China 21075138special fund of State Key Laboratory of Structural Chemistry 2016028

Figures(6)

  • Comparative molecular field analysis (CoMFA) techniques were used to perform three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on the anti-tumor activity (pIH and pIC) of 28 fluoroquinolon-3-yl s-triazole sulfide-ketone derivatives (FQTSDs) against two cancer cell lines, including human hepatoma Hep-3B cells and human pancreatic cancer Capan-1 cells. 23 compounds were randomly selected as the training set to establish the prediction models, which were verified by the test set of 6 compounds containing template molecule. The obtained cross-validation (Rcv2) and non-cross-validation correlation coefficients (R2) of the CoMFA models were 0.477 and 0.850 for pIH, and 0.421 and 0.836 for pIC, respectively. The contributions of steric and electrostatic fields to pIH were determined to be 48.1% and 51.9%, and those to pIC were 49.4% and 50.6%, respectively. The CoMFA models were then used to predict the activities of the compounds in the training and testing sets, and the models had a strong stability and good predictability. Based on the 3D contour maps, four novel FQTSDs with a higher anti-tumor activity were designed. However, the effectiveness of these novel FQTSDs is still needed to be verified by experimental results.
  • 加载中
    1. [1]

      Mayer, C.; Janin, Y. L. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem. Rev. 2014, 114, 2313-2342.  doi: 10.1021/cr4003984

    2. [2]

      Zhou, Y.; Xu, X.; Sun, Y.; Wang, H. P.; Sun, H. P.; You, Q. D. Synthesis, cytotoxicity and topoisomerase II inhibitory activity of lomefloxacin derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 2974-2978.  doi: 10.1016/j.bmcl.2013.03.037

    3. [3]

      Pirhadi, S.; Shiri, F.; Ghasemi, J. B. Methods and applications of structure-based pharmacophores in drug discovery. Curr. Top. Med. Chem. 2013, 13, 1036-1047.  doi: 10.2174/1568026611313090006

    4. [4]

      Guo, Z. R. Strategy of molecular drug design: activity and druggability. Acta Pharm. Sin. 2010, 45, 539-547.

    5. [5]

      Gao, L. Z.; Xie, Y. S.; Li, T.; Huang, W. T.; Hu, G. Q. Synthesis, antitumor activity and SAR of C-3 oxadiazole sulfanylacetylhydrazone-substituted fluoroquinolone analogues. Acta Pharm. Sin. 2014, 49, 1694-1698.

    6. [6]

      Ni, L. L.; Yan, Q.; Wu, S. M.; Xie, Y. S.; Gao, L. Z.; Liu, Y. J.; Huang, W. L.; Hu, G. Q. Synthesis and antitumor activity of fluoroquinolon-3-yl-s-triazole sulfide ketones and their derivatives from ciprofloxacin. Acta Pharm. Sin. 2015, 50, 1258-1262.

    7. [7]

      Xie, Y. S.; Gao, L. Z.; Yan, Q.; Wu, S. M.; Ni, L. L.; Liu, Y. J.; Huang, W. L.; Hu, G. Q. Synthesis and antitumor activity of fluoroquinolon-3-yl s-triazole sulfide-ketone thiosemicarbazone derivatives of ofloxacin. Chin. J. Appl. Chem. 2016, 33, 25-31.

    8. [8]

      Abdulla, A. M.; Mei, Z.; Qiu, L.; Ju, X. H. Theoretical investigation on QSAR of (2-methyl-3-biphenylyl) methanol analogs as PD-L1 inhibitor. Chin. J. Chem. Phys. 2020, 33, 459-467.  doi: 10.1063/1674-0068/cjcp1909168

    9. [9]

      Zheng, S. S.; Li, T. T.; Wang, J.; Hu, Y. J.; Zhang, H. X.; Zhao, S. X.; Zhao, Y. H.; Li, C. QSAR models for predicting the aqueous reaction rate constants of aromatic compounds with hydrated electrons. Envir. Chem. 2019, 38, 1005-1013.

    10. [10]

      Yang, F.; Wang, M.; Wang, Z. Y. Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere 2013, 93, 82-89.  doi: 10.1016/j.chemosphere.2013.04.081

    11. [11]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Engin. Data 2012, 57, 2442-2455.  doi: 10.1021/je300407g

    12. [12]

      Zeng, X. L.; Qu, R. J.; Feng, M. B.; Chen, J.; Wang, L. S.; Wang, Z. Y. Photodegradation of polyfluorinated dibenzo-p-dioxins (PFDDs) in organic solvents: experimental and theoretical studies. Environ. Sci. Technol. 2016, 50, 8128-8134.  doi: 10.1021/acs.est.6b02682

    13. [13]

      Qu, R. J.; Liu, J. Q.; Li, C. G.; Wang, L. S.; Wang, Z. Y.; Wu, J. C. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Research 2016, 104, 34-43.  doi: 10.1016/j.watres.2016.07.071

    14. [14]

      Feng, H.; Du, X. H.; Chen, Y.; Feng, C. J. 3D-QSAR models of anti-tumor activity for histone deacetylase inhibitors containing dihydropyridin-2-one. Chin. J. Struct. Chem. 2020, 39, 855-862.

    15. [15]

      Tong, J. B.; Qin, S. S.; Lei, S.; Wang, Y. A 3D-QSAR study of HIV-1 integrase inhibitors using RASMS and Topomer CoMFA. Chin. J. Struct. Chem. 2019, 38, 867-881.

    16. [16]

      Shu, M.; Wu, T.; Wang, B. W.; Li, J.; Xu, C. M.; Lin, Z. H. 3D-QSAR and surflex docking studies of a series of alkaline phosphatase inhibitors. Chin. J. Struct. Chem. 2019, 38, 7-16.

    17. [17]

      An, C. H.; Shu, M.; Zai, X. L.; Zhang, B. N.; Li, J.; Chang, Z. C.; Hu, Y.; Lin, Z. H. Combined 3D-QSAR, pharmacophore and docking studies on benzene-sulfonamide derivatives as potent 12-lipoxygenase inhibitors. Lett. Drug Des. Discov. 2017, 14, 74-82.

    18. [18]

      Guo, Z. R. Molecular Drug Design. Science press. Beijing 2005, p20.

    19. [19]

      Feng, C. J. CoMFA model of herbicidal activity of phenyl-sulfonylured derivatives. J. Xuzhou Inst. Tech. (Nat. Sci. Ed. ) 2019, 34, 21-25.

    20. [20]

      Feng, C. J. CoMFA model of inhibitory activity for nitrobenzene derivatives to photobacteria. J. Xuzhou Inst. Tech. (Nat. Sci. Ed. ) 2020, 35, 28-31.

    21. [21]

      Joshi, S. D.; More, U. A.; Aminabhavi, T. M.; Badiger, A. M. Two- and three-dimensional QSAR studies on a set of antimycobacterial pyrroles: CoMFA, Topomer CoMFA, and HQSAR. Med. Chem. Res. 2014, 23, 107-126.  doi: 10.1007/s00044-013-0607-3

    22. [22]

      Cramer, R. D.; Patterson, D. E, ; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959-5967.  doi: 10.1021/ja00226a005

    23. [23]

      Hu, S. Q.; Mi, S. Q.; Jia, X. L.; Guo, A. L.; Chen, S. H.; Zhang, J.; Liu, X. Y. 3D-QSAR study and molecular design of benzimidazole derivatives as corrosion inhibitors. Chem. J. Chin. Univ. 2011, 32, 2402-2409.

    24. [24]

      Liu, D.; Zhang, W.; Xu, L. Quantitative structure-activity/property relationships for chiral hydroxy acids and amino acids. Acta Chim. Sin. 2009, 67, 145-150.

    25. [25]

      Zhang, J.; Shen, P.; Lu, T.; Yu, D.; Li, H.; Yang, G. Theoretical studies on quantitative structure-activity relationship and structural modification for the inhibition of MMP-9 by flavonoids. Acta Chim. Sin. 2011, 69, 383-392.

    26. [26]

      Anshuman, D.; Sushil, K. K.; Stuti, G.; Anil, K. S. Development of CoMFA, advance CoMFA and CoMSIA models in pyrroloquinazolines as thrombin receptor antagonist. Bioorg. Medic. Chem. 2004, 12, 3591-3598.

    27. [27]

      Sun, W. S.; Chen, L. C. Statistics (Second edition). China agricultural university press. Beijing 2012, p241, 242, 470.

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    5. [5]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    6. [6]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    9. [9]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    13. [13]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    14. [14]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    15. [15]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    16. [16]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    17. [17]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    18. [18]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    19. [19]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    20. [20]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

Metrics
  • PDF Downloads(1)
  • Abstract views(306)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return